Arithmetic progression - Tousasuuretsu

Japanese: 等差数列 - とうさすうれつ
Arithmetic progression - Tousasuuretsu

A sequence that is created by adding a certain number to another number one by one. It is also called an arithmetic progression, and is sometimes written as AP (arithmetic progression). The first number is the first term, and the constant numbers added one by one are called the common difference. If the first term is a and the common difference is d, then the nth term, a n , is:
a n =a+(n-1)d
In particular, when three numbers a1 , a2 , and a3 form an arithmetic progression, the number a2 in between is called the mean arithmetic term. The mean arithmetic term is expressed as the arithmetic mean of the two numbers a1 and a3 at both ends. That is,

If the sum of an arithmetic progression with first term a, common difference d, and number of terms n is S n , then

Here, l represents the last term of the sequence (called the terminal term). In particular, the sum of the nth term of a sequence of odd numbers 1, 3, 5, … is n2 . And for a sequence b1 , b2 , … whose general term is a quadratic function of the term number n, that is, bn = An2 + Bn + C, the difference sequence is an arithmetic sequence, and if C = 0, then bn is the sequence that represents the sum of the first n terms of an arithmetic sequence a1 , a2 , …. The reciprocal of the sequence a1 , a2 , …, that is,

When a 1 , a 2 , … form an arithmetic sequence, a 1, a 2 , … are called a harmonic sequence. In particular, when three numbers a 1 , a 2, a 3 form a harmonic sequence, a 2 is called the mean harmonic. This is the harmonic mean of a 1 and a 3.

It is.

[Osamu Takenouchi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

ある数に、一定の数を次々に加えていってできる数列。算術数列ともいい、A. P.(arithmetic progression)と書くこともある。最初の数を初項、次々に加える一定数を公差という。初項をa、公差をdとするとき、その第n項anは、
  an=a+(n-1)d
と表される。とくに、三つの数a1,a2,a3が等差数列をなすとき、間の数a2を等差中項という。等差中項は両端の数a1、a3の相加平均(算術平均)で表される。すなわち

である。初項a、公差d、項数nの等差数列の和をSnとすれば、

である。ここでlは、この数列の最後の項(末項という)を表す。とくに、奇数からなる数列1,3,5,……のn項の和はn2である。そして、一般項が項の番号nについての二次式であるような数列b1,b2,……すなわちbn=An2+Bn+Cであるような数列については、その階差数列は等差数列であり、もしここでC=0ならば、bnは、ある等差数列a1,a2,……に対して、そのn項目までの和を表す数列となる。数列a1,a2,……の逆数、すなわち

が等差数列をなすとき、a1,a2,……を調和数列という。とくに、三つの数a1,a2,a3が調和数列をなすとき、a2を調和中項という。これはa1、a3の調和平均

である。

[竹之内脩]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Insight - insight (English spelling)

>>:  Girth

Recommend

Ancient Chinese (English spelling)

…He served as president of the University of Goth...

Poor Law Office - Poor Law Office

…Another groundbreaking reform was the establishm...

Voltage divider

When measuring high voltage, it is necessary to di...

The Record of Xie's Southern Expedition

A full-length novel from the mid-Joseon Dynasty of...

parousia

…Christian belief that Jesus has left the world, ...

Touka no Sechie - Touka no Sechie

During the Heian period, a lottery was held at the...

Colysis elliptica (Thunb.) Ching

An evergreen perennial fern of the Polypodiaceae f...

Yoshino [town] - Yoshino

A town in Yoshino County, central Nara Prefecture....

Rhynchophoridae

...A general term for insects belonging to the Rh...

Collegium (English spelling) collegium (Latin)

A Roman association or guild. Originally it meant...

Hard fabric - Hard discharge

〘 noun 〙 Tightly woven fabric. Twill. ※Matsusake S...

emperor

…(1) Imperator comes from the Latin imperare, mea...

Gilbert's Act

The general term for the 1782 Act, which confirmed...

Onikobe Plateau

...At the southern foot of Mt. Arao is the mud vo...

Coccyx - Stiffness

This refers to fused caudal vertebrae. As the nam...