Electromagnetism

Japanese: 電磁気学 - でんじきがく(英語表記)electromagnetism
Electromagnetism

The system of laws governing electrical and magnetic phenomena is called electromagnetism. Optics is included in this system.

The history of electromagnetism is long, and the discovery of the phenomenon can be traced back to ancient times. Electrical phenomena were recognized as the attraction of lint and other debris by rubbing amber, while magnetic phenomena were recognized as the attraction of iron pieces and the pointing of north and south by magnets. At the end of the 18th century, Coulomb's law was discovered, which relates to the forces between charged bodies and between magnetic poles. However, at that time, electrical phenomena and magnetic phenomena were considered to be completely separate phenomena, and optics was also on its own path. In addition, due to the influence of the then mainstream view of universal gravitation, electromagnetic interactions were also considered to be action at a distance. In 1799, Volta invented the battery, making it easy to obtain electric current, and in 1820, Oersted discovered the magnetic effect of electric current. Then, in 1831, Faraday discovered that electric current can be obtained from magnetism, that is, electromagnetic induction, and at this point, electricity and magnetism began to walk the path to unification. Faraday also came up with the concept of proximity action, replacing the then mainstream action at a distance, as a concept of electric and magnetic interaction. Maxwell's equations can be said to be a mathematical expression of Faraday's idea of ​​proximity action. In 1864, Maxwell proposed the fundamental equations for the electromagnetic field, unifying them. It was soon discovered that the wave solution to these equations explained all the properties of light, and the system of electromagnetism, including optics, was born. However, Maxwell's equations alone cannot derive all the laws of electromagnetism. Electromagnetic phenomena in matter are deeply involved with quantum effects and statistics, and even in the derivation of the laws of electromagnetic fields in a vacuum, assumptions that are not necessarily self-evident are sometimes used. Furthermore, the effect of an electric charge interacting with the electromagnetic field it creates is not explained.

Later, special relativity was born from research into the electromagnetic field inside moving objects. Quantum theory was also born from research into the interaction between matter and electromagnetic fields. Furthermore, applied fields such as electro-optics, electrical engineering, and electronics were born. Today, electromagnetism, along with mechanics, forms the basis of all natural sciences. The development and application of electromagnetism has brought about some of the most revolutionary advances in the history of human civilization.

In addition, when dealing with time-varying electromagnetic fields, electromagnetism is also called electrodynamics.

[Hiroshi Yasuoka]

[Reference] | Magnets | Electricity

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

電気現象、磁気現象に関する諸法則の体系を電磁気学という。光学はこの体系に含まれる。

 電磁気学の歴史は古く、その現象の発見は古代にさかのぼることができる。電気現象は、摩擦したこはくが糸屑(いとくず)などを吸い付けることとして、一方、磁気現象は、磁石が鉄片を吸い付けたり、南北をさしたりすることとして、認識されていた。18世紀末、帯電体間の力、磁極間の力に関するクーロンの法則が発見された。しかし、当時は、電気現象と磁気現象とはまったく別の現象だと考えられていたし、光学も独自の道を歩んでいた。また万有引力に対する当時主流だった考え方の影響で、電磁的な相互作用も遠隔作用であると考えられていた。1799年ボルタによって電池が発明されて電流が容易に得られるようになり、1820年にはエルステッドが電流の磁気作用を発見した。続いて1831年ファラデーが磁気から電流が得られること、すなわち電磁誘導を発見し、ここに至って電気学と磁気学とが統一への道を歩み出した。またファラデーは、電気的および磁気的相互作用の概念として、当時主流だった遠隔作用にかわって近接作用を考え出した。マクスウェルの方程式は、ファラデーの近接作用の考えを数学的に表現したものということができる。そして1864年マクスウェルによって電磁場の基礎方程式が提出され、この統一がなされた。この方程式の波動解が光の性質をすべて説明することもまもなくわかり、光学も含めて、電磁気学の体系が誕生した。しかしマクスウェルの方程式だけでは電磁気学の諸法則のすべてを導くことはできない。物質中の電磁気現象には、量子効果と統計性が深くかかわってくるし、真空中の電磁場の諸法則のなかでさえ、その導出において、かならずしも自明とはいえない仮定が用いられている場合がある。また、一つの電荷が自分自身のつくる電磁場と相互作用する効果は説明されていない。

 その後、運動物体中の電磁場に関する研究から特殊相対論が生まれた。また物質と電磁場との相互作用の研究から量子論が生まれた。さらに応用分野として、電気光学、電子工学、エレクトロニクスなどが生まれた。今日、電磁気学は、力学とともに、自然科学すべての基礎をなしている。電磁気学の発展と応用は人類の文明史上にもっとも画期的な進歩をもたらした。

 なお、時間変化する電磁場を取り扱う場合には、電磁気学はとくに電気力学ともよばれる。

[安岡弘志]

[参照項目] | 磁石 | 電気

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Tenjiku

>>:  Electron tube

Recommend

Chikuhei Nakajima

A businessman and politician during the Taisho an...

Agricultural Policy Theory

This book outlines the agricultural policies and s...

Extreme writing - Extreme writing

A certificate of authenticity for art and crafts, ...

Costus malortieanus (English spelling)

…[Ichiro Sakanashi]. … *Some of the terminology t...

《Introduction to Iranian Linguistics》

…Iranology began with rigorous linguistic researc...

Metatungstate - Metatungsten Sanen

A salt of metatungstic acid, one of the polytungst...

credenza

…Early medieval cupboards were made of thick wood...

Eiki

A haiku poet from the end of the Edo period and th...

Ichikawa Sanki

English scholar. Great-grandson of the late Edo p...

Tipping thermometer - Tentō ondōkei

A special thermometer used to measure the temperat...

Amako Kiyosada - Amako Kiyosada

... The Onin War, which began in 1467 (Onin 1), l...

Isostilbene - Isostilbene

...There are two types of isomers, ( E )-isomer (...

Zuisenji Temple

[1] A Rinzai sect Engakuji temple in Nikaido, Kama...

Tàpies - Antoni Tàpies

Spanish painter. Born in Barcelona. Following in ...

Jean Anouilh

French playwright. Born in Bordeaux. His father w...