Linear transformation

Japanese: 一次変換 - いちじへんかん
Linear transformation

A mapping from one space to another determined by a given matrix. Let A = (a ij ) be a matrix with m rows and n columns. For a point P(x 1 , ..., x n ) in an n-dimensional space E n,

Point P' (x 1 ', ..., x m ') is determined by this. Point P' is a point in m-dimensional space E m . For a matrix A with m rows and n columns, the mapping from E n to E m determined in this way is called a linear transformation determined by A. For example,

Then, for a point P(x 1 , x 2 , x 3 ) in space, if we write (*) component by component, we get:


For a point in space (x 1 , x 2 , x 3 ), this equation determines a point in space (x 1 ', x 2 ', x 3 ').

A linear transformation has the property that it maps a line to a line or a point, and a plane to a plane, a line, or a point. Also, for an n-dimensional vector x = (x 1 , ..., x n )
For m-dimensional vector x′=(x 1 , …, x m ) defined by (*),
This mapping is called a linear transformation from the n-dimensional vector space Vn to the m-dimensional vector space Vm . This mapping f has the following properties for vector operations:

f(k 1 x 1 + k 2 x 2 )=k 1 f(x 1 )+k 2 f(x 2 )
This is called the linearity of the linear transformation f.

[Terada Fumiyuki]

[Reference items] | Matrix | Linearity

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

行列を与えたとき、それによって定まる空間から空間への写像のこと。A=(aij)をm行n列の行列とする。n次元空間En内の点P(x1,……,xn)に対して

によって点P′(x1′,……,xm′)が定まる。点P′はm次元空間Emの点である。m行n列の行列Aに対して、このようにして定まるEnからEm内への写像を、Aで定まる一次変換という。たとえば、

のとき、空間の点P(x1,x2,x3)に対して(*)を成分ごとに書くと次のようになる。


空間の点(x1,x2,x3)に、この式によって、空間の点(x1′,x2′,x3′)が定まる。

 一次変換は、直線を直線または点に、平面を平面か直線か点に写像する、という性質をもっている。またn次元ベクトル
  x=(x1,……,xn)
に対して、(*)で定まるm次元ベクトル
  x′=(x1,……,xm)
を対応させる。この写像をn次元ベクトル空間Vnからm次元ベクトル空間Vmへの一次変換という。この写像fは、ベクトルの演算について次の性質をもつ。

  f(k1x1+k2x2)=k1f(x1)+k2f(x2)
これを一次変換fの線形性という。

[寺田文行]

[参照項目] | 行列 | 線形性

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Linear equation - ichijiho teishiki

>>:  Linear fractional transformation

Recommend

Shop - Mise

(From the abbreviation of "show shelf") ...

The Vicar of Wakefield

A novella by British author O. Goldsmith. Publish...

Ogata [town] - Ogata

This is an old town in Ono County, southern Oita P...

椁 - くく

…The outer box that holds the coffin is called a c...

Gifu

…Another method of combination is called phono-se...

Volcanic Physics

...We also analyze the propagation of seismic wav...

Nicolaus Cusanus

1401‐64 German philosopher, theologian, mathematic...

Eid al-Fitr

A Muslim holiday. The 1st to 3rd of the 10th month...

Bismarck - Otto Eduard Leopold Fürst von Bismarck

German politician who contributed to the politica...

Andrey Yanuar'evich Vishnuskiy

Soviet jurist and politician. He served as profes...

Amyloid

It is a water-soluble starch-like polysaccharide ...

Depression of melting point

…A pure liquid freezes at a constant temperature ...

Aneau, Barthélemy

[Born] 1500. Bourges [died] 1561. French poet of L...

myrtle

...The variegated variety, V. argenteimarginata H...

Hierarchical structure (botany) - Plant biology

…In forests, the distribution of leaves in a comm...