Linear transformation

Japanese: 一次変換 - いちじへんかん
Linear transformation

A mapping from one space to another determined by a given matrix. Let A = (a ij ) be a matrix with m rows and n columns. For a point P(x 1 , ..., x n ) in an n-dimensional space E n,

Point P' (x 1 ', ..., x m ') is determined by this. Point P' is a point in m-dimensional space E m . For a matrix A with m rows and n columns, the mapping from E n to E m determined in this way is called a linear transformation determined by A. For example,

Then, for a point P(x 1 , x 2 , x 3 ) in space, if we write (*) component by component, we get:


For a point in space (x 1 , x 2 , x 3 ), this equation determines a point in space (x 1 ', x 2 ', x 3 ').

A linear transformation has the property that it maps a line to a line or a point, and a plane to a plane, a line, or a point. Also, for an n-dimensional vector x = (x 1 , ..., x n )
For m-dimensional vector x′=(x 1 , …, x m ) defined by (*),
This mapping is called a linear transformation from the n-dimensional vector space Vn to the m-dimensional vector space Vm . This mapping f has the following properties for vector operations:

f(k 1 x 1 + k 2 x 2 )=k 1 f(x 1 )+k 2 f(x 2 )
This is called the linearity of the linear transformation f.

[Terada Fumiyuki]

[Reference items] | Matrix | Linearity

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

行列を与えたとき、それによって定まる空間から空間への写像のこと。A=(aij)をm行n列の行列とする。n次元空間En内の点P(x1,……,xn)に対して

によって点P′(x1′,……,xm′)が定まる。点P′はm次元空間Emの点である。m行n列の行列Aに対して、このようにして定まるEnからEm内への写像を、Aで定まる一次変換という。たとえば、

のとき、空間の点P(x1,x2,x3)に対して(*)を成分ごとに書くと次のようになる。


空間の点(x1,x2,x3)に、この式によって、空間の点(x1′,x2′,x3′)が定まる。

 一次変換は、直線を直線または点に、平面を平面か直線か点に写像する、という性質をもっている。またn次元ベクトル
  x=(x1,……,xn)
に対して、(*)で定まるm次元ベクトル
  x′=(x1,……,xm)
を対応させる。この写像をn次元ベクトル空間Vnからm次元ベクトル空間Vmへの一次変換という。この写像fは、ベクトルの演算について次の性質をもつ。

  f(k1x1+k2x2)=k1f(x1)+k2f(x2)
これを一次変換fの線形性という。

[寺田文行]

[参照項目] | 行列 | 線形性

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Linear equation - ichijiho teishiki

>>:  Linear fractional transformation

Recommend

Compressor - compressor

A machine that compresses gas to obtain a high pr...

NICU - NICU

A special medical department in a hospital that p...

Aki Kokujin Ikki

...This refers to the regional alliances that loc...

Kibitsu

...There are no definite records of eruptions in ...

Artemisia major - Artemisia major

…These species are characterized by the lack of h...

Mihara [town] - Mihara

An old town in Mihara County, southern Awaji Islan...

Old Chrome

…Learning from the works of M. Hobbema, R. Wilson...

machina

… The Dutch and English word machine is originall...

Arata - Koden

Under the ancient Ritsuryo system, this refers to...

krypton

Kr. Atomic number 36. Electron configuration [Ar]...

Safety rating - Anzenhyoka

… To determine whether the design of equipment wi...

Penates publici (English spelling)

…The name comes from penus (meaning "stored ...

《Kamikāgama》(English spelling) Kamikagama

…(1) The Shaivite sect flourished especially in t...

Children (children) - Children

When considering the word and concept of children,...

Keeling [Islands] - Keeling

→ Cocos Islands Source : Heibonsha Encyclopedia Ab...