Linear fractional transformation

Japanese: 一次分数変換 - いちじぶんすうへんかん(英語表記)linear fractional transformation
Linear fractional transformation
It is also called the Möbius transformation. When the constants a , b , c , and d are complex numbers and ad - bc ≠ 0, the function is called a linear fractional function, and the mapping determined by this is called a linear fractional transformation. It is defined on the complex plane C other than -d / c when c ≠ 0, and on the complex plane C when c = 0. Since it represents the same function if a : b : c : d is constant, there is no loss of generality in assuming ad - bc = 1. When c ≠ 0, this linear fractional function gives a one-to-one mapping from C -(- d / c ) to C -( a / c ), and the inverse mapping is given by.

Source: Heibonsha World Encyclopedia, 2nd Edition Information

Japanese:
メービウス変換Möbius transformationともいう。定数a,b,c,dが複素数で,adbc≠0であるとき関数を一次分数関数といい,これより定まる写像を一次分数変換という。これはc≠0のとき-d/c以外の複素平面C上で定義され,c=0のときは複素平面C上で定義される。abcdが一定であれば同じ関数を表すから,adbc=1と仮定しても一般性を失わない。c≠0のときはこの一次分数関数はC-(-d/c)からC-(a/c)への1対1上への写像を与え,逆写像はで与えられる。

出典 株式会社平凡社世界大百科事典 第2版について 情報

<<:  Linear transformation

>>:  The first circumstance is irrelevant

Recommend

Kigali - Kigali (English spelling)

The capital of Rwanda, in central Africa. Populat...

Aleksandr Stepanovich Popov

Russian radio researcher. Born in a mining villag...

Aldrin

The chemical formula is C12H8Cl6 . Drin (organochl...

Emperor Saga

Year of death: July 15, 842 (August 24, 842) Year ...

Nomonhan Incident

A large-scale armed clash between the Japanese an...

Psalmi Salomonis; The Psalms of Solomon

The only psalm in the Old Testament pseudepigraphy...

Zenrinkyokai - Good Neighborhood Association

Founded in Tokyo in 1933 as an organization for pr...

Grew, N. (English spelling) GrewN

…However, Hooke’s intention was to explain the ce...

Massau, J. MassauJ

...To express the functional relationship F ( x ,...

Offer Gold Mine - Offer Gold Mine

…A city in Moscow Oblast, western European Russia...

Higashimatsuyama [city] - Higashimatsuyama

A city in central Saitama prefecture. It was incor...

Yokoi Tokifuyu

Year of death: April 18, 1906 (Meiji 39) Year of b...

Corinth, Lovis

Born: July 21, 1858 in Tapiau [Died] July 17, 1925...

Planipennia

…The order Neuroptera is divided into three subor...

chansons à toile (English spelling)

...Famous local dances include the farandole (Pro...