Recently, it is often simply called the product. (1) Regarding sets For two sets A and B , the set formed by all pairs ( a , b ) of a and b where a ∈ A and b ∈ B is called the product, Cartesian product, or product set of A and B , and is represented by A × B. In other words, in intensional notation, A × B = {( a , b ) | a ∈ A , b ∈ B }. In general, for n sets A1 , A2 , ... , An, Πi = 1 n Ai = A1 × A2 × ... × An = { (a1 , a2 , ..., an ) | a1 ∈ A1 , a2 ∈ A2 , ..., an ∈ An } is defined as the Cartesian product of those sets. A similar definition can be made for an infinite number of sets. (2) Regarding groups, let G1 and G2 be groups , and let G1 × G2 be the set of all pairs ( x1 , x2 ) where x1 ∈ G1 and x2 ∈ G2 . Now, let (x1, x2 ) and ( x'1 , x'2 ) be elements of G1 × G2 . If we define the product of these two elements as the pair ( x1 x'1 , x2 x'2 ) , then G1 × G2 also becomes a group. G1 × G2 , which has been given the structure of a group in this way , is called the product or direct product of G1 and G2 . In general, if sets A and B have an algebraic structure, and A × B can be given the same algebraic structure, then A × B is called the product or direct product of A and B. (3) Regarding vector spaces , let V1 , V2 be any vector spaces, and V1 × V2 be the set of all pairs (v1, v2) with v1 ∈ V1 , v2 ∈ V2. Now, let two pairs (v1 , v2 ) and ( v'1 , v'2 ) be elements of V1 × V2 . If we define the sum as ( v1 , v2 ) + (v'1, v'2 ) = ( v1 + v'1 , v2 + v'2 ) and the product as c(v1, v2) = (cv1 , cv2 ) for any element a of the field K , then V1 × V2 also becomes a vector space . In this case, V 1 × V 2 is called the direct product of V 1 and V 2 . Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
最近では単に積 product ということも多い。 (1) 集合に関して 2つの集合 A ,B に対して,a∈A ,b∈B であるあらゆる a ,b の組 (a,b) によってつくられる集合を A と B の積,直積あるいは積集合といい,A×B で表わす。すなわち内包的記法で書けば,A×B={(a,b)|a∈A,b∈B} である。また一般に n 個の集合 A1 ,A2 ,…,An に対して Πi=1nAi=A1×A2×…×An={(a1,a2,…,an)|a1∈A1,a2∈A2,…,an∈An} を,それらの集合の直積と定義する。無限個の集合に対しても,同様に定義することができる。 (2) 群に関して G1 ,G2 を群とし,x1∈G1 ,x2∈G2 であるすべての対 (x1,x2) の集合を G1×G2 とする。いま (x1,x2) および (x'1,x'2) を G1×G2 の元とするとき,これら2元の積を (x1x'1,x2x'2) なる対と定義すれば,G1×G2 はまた群となる。こうして群の構造を与えられた G1×G2 を G1 と G2 の積あるいは直積と呼ぶ。一般に集合 A ,B が代数的構造をもつ場合は,A×B にも同じ代数的構造を与えることができれば,その A×B を A と B の積あるいは直積という。 (3) ベクトル空間に関して V1 ,V2 を任意のベクトル空間,v1∈V1 ,v2∈V2 である,すべての対 (v1,v2) の集合を V1×V2 とする。いま,2つの対 (v1,v2) および (v'1,v'2) をともに V1×V2 の元とするとき,和を (v1,v2)+(v'1,v'2)=(v1+v'1,v2+v'2) ,また体 K の任意の元 a に対して,積を c(v1,v2)=(cv1,cv2) と定義すれば,V1×V2 はまたベクトル空間になる。このとき V1×V2 を V1 と V2 の直積と呼ぶ。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
A thick-shelled, semicircular snail of the Neritid...
A fast and lively dance in 6/8 or 12/8 that was p...
A county-level city in the midwest of Gansu Provi...
…It has been a Crown Dependence since 1765. Polit...
…Vienna also developed into a modern metropolis u...
...National lawsuits were filed 30 times between ...
...A hollowed-out boat used in various parts of t...
An old French unit of area. It was used to indicat...
...Asexual reproduction involves binary fission o...
Vomiting refers to the expulsion of blood that ha...
A group of animal fossils discovered in 1947 in t...
This name refers to the Yamabushi Kagura (mountai...
...Located in the mountainous area upstream of th...
An inlet located almost in the center of the Seto...
The capital of Umbria, central Italy. Population:...