Direct product

Japanese: 直積 - ちょくせき(英語表記)direct product
Direct product
Recently, it is often simply called the product. (1) Regarding sets For two sets A and B , the set formed by all pairs ( a , b ) of a and b where aA and bB is called the product, Cartesian product, or product set of A and B , and is represented by A × B. In other words, in intensional notation, A × B = {( a , b ) | aA , bB }. In general, for n sets A1 , A2 , ... , An, Πi = 1 n Ai = A1 × A2 × ... × An = { (a1 , a2 , ..., an ) | a1A1 , a2 A2 , ..., anAn } is defined as the Cartesian product of those sets. A similar definition can be made for an infinite number of sets. (2) Regarding groups, let G1 and G2 be groups , and let G1 × G2 be the set of all pairs ( x1 , x2 ) where x1G1 and x2G2 . Now, let (x1, x2 ) and ( x'1 , x'2 ) be elements of G1 × G2 . If we define the product of these two elements as the pair ( x1 x'1 , x2 x'2 ) , then G1 × G2 also becomes a group. G1 × G2 , which has been given the structure of a group in this way , is called the product or direct product of G1 and G2 . In general, if sets A and B have an algebraic structure, and A × B can be given the same algebraic structure, then A × B is called the product or direct product of A and B. (3) Regarding vector spaces , let V1 , V2 be any vector spaces, and V1 × V2 be the set of all pairs (v1, v2) with v1 V1 , v2 V2. Now, let two pairs (v1 , v2 ) and ( v'1 , v'2 ) be elements of V1 × V2 . If we define the sum as ( v1 , v2 ) + (v'1, v'2 ) = ( v1 + v'1 , v2 + v'2 ) and the product as c(v1, v2) = (cv1 , cv2 ) for any element a of the field K , then V1 × V2 also becomes a vector space . In this case, V 1 × V 2 is called the direct product of V 1 and V 2 .

Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information

Japanese:
最近では単に積 product ということも多い。 (1) 集合に関して 2つの集合 AB に対して,aAbB であるあらゆる ab の組 (ab) によってつくられる集合を AB の積,直積あるいは積集合といい,A×B で表わす。すなわち内包的記法で書けば,A×B={(ab)|aAbB} である。また一般に n 個の集合 A1A2 ,…,An に対して Πi=1nAiA1×A2×…×An={(a1a2,…,an)|a1A1a2A2,…,anAn} を,それらの集合の直積と定義する。無限個の集合に対しても,同様に定義することができる。 (2) 群に関して  G1G2 を群とし,x1G1x2G2 であるすべての対 (x1x2) の集合を G1×G2 とする。いま (x1x2) および (x'1x'2) を G1×G2 の元とするとき,これら2元の積を (x1x'1x2x'2) なる対と定義すれば,G1×G2 はまた群となる。こうして群の構造を与えられた G1×G2G1G2 の積あるいは直積と呼ぶ。一般に集合 AB が代数的構造をもつ場合は,A×B にも同じ代数的構造を与えることができれば,その A×BAB の積あるいは直積という。 (3) ベクトル空間に関して  V1V2 を任意のベクトル空間,v1V1v2V2 である,すべての対 (v1v2) の集合を V1×V2 とする。いま,2つの対 (v1v2) および (v'1v'2) をともに V1×V2 の元とするとき,和を (v1v2)+(v'1v'2)=(v1v'1v2v'2) ,また体 K の任意の元 a に対して,積を c(v1v2)=(cv1cv2) と定義すれば,V1×V2 はまたベクトル空間になる。このとき V1×V2V1V2 の直積と呼ぶ。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

<<:  Direct rolling

>>:  Orthoptera - Orthoptera

Recommend

Denitrification - Datsuchitsu

[ I ] Also known as denitrification. This refers ...

Arabian Nights

…One of the classic masterpieces of Arabic litera...

Magnetic flux

This is the quantity obtained by integrating magn...

Cabezon, A.de - Cabezon

...In the late 16th century, A. Gabrieli and C. M...

Vela (English spelling)

Its abbreviation is Vel. A major constellation in ...

Hydrophobia

…Hydrophobia is a condition in which the throat s...

USMarineCorps

...A naval force organized especially for land wa...

Gracchi Brothers - Gracchi Brothers

Two brothers who were reformist politicians from ...

Jipangu

…However, the name of the country, Japan, seems t...

School bus (English)

A bus used by children and students to commute to ...

Ikenishi Gonsui

Year of death: September 24, 1722 (November 2, 172...

Feldspar - Feldspar

It is an aluminosilicate mineral, belonging to th...

Hemocyanin

Hemocyanin is a copper protein capable of transpo...

Shemuel; Books of Samuel

A historical book of the Old Testament. In Judaism...

Ultrasonic microscope

A microscope that applies ultrasound to a sample ...