A microscope that applies ultrasound to a sample and uses the reflected or transmitted waves to view images. When ultrasound reaches the gigahertz level, the wavelength in water is about 1 micrometer, providing the same level of resolution as an optical microscope. In addition, because it is an acoustic wave, it is not affected by the optical properties of the sample, and it is possible to see not only the surface image of the sample but also the subsurface structure, and it is also possible to observe biological tissue without staining. The idea of using ultrasound in microscopes was proposed by Sokolov of the Soviet Union in 1930. However, full-scale development did not begin until 1973, when Kuwait and his colleagues at Stanford University in the United States devised a scanning microscope using a focused ultrasonic beam, and research became more active. There are two types of scanning acoustic microscopes: reflection type and transmission type. Depending on the resolution and penetration depth, ultrasonic waves of about 100 megahertz to 3 gigahertz are used. In the reflection type, ultrasonic pulses are sent and received by a piezoelectric element attached to the top surface of an acoustic lens. Although it is necessary to separate the pulses when transmitting and when receiving, it has the advantage that there are fewer restrictions on the sample and it is easier to express the elasticity difference of materials. In the transmission type, the sample is placed between two opposing acoustic lenses, and ultrasonic waves are sent and received by a piezoelectric element attached to each acoustic lens. Most of the commercial products are the former type, but in both cases, the space between the sample and the acoustic lens is filled with liquid to make it easier to irradiate the sample with ultrasonic waves. Sapphire crystals are used for the acoustic lens. It is funnel-shaped with a flat polished top surface, and has a 50-100 micrometer recess at the bottom, with a diameter and height of less than 1 centimeter. Ultrasonic waves are sent and received between the sample and the ultrasonic pulse through this recess. The piezoelectric element that transmits and receives 1 GHz ultrasound is extremely thin, at around 1 micrometer thick. A scanning ultrasonic microscope emits ultrasonic pulses and captures the echo or transmitted signal while moving the sample stage horizontally in small increments, depicting the signal strength at each position. This method has achieved a horizontal resolution of 1 micrometer and a depth resolution of about 2 micrometers. An ultrasonic microscope with a depth resolution of 0.3 micrometers has also been realized using interference microscopy. A so-called optical scanning acoustic microscope irradiates ultrasonic waves onto the entire surface of a sample from below at an angle and captures minute changes occurring in the sample by laser scanning, thereby obtaining optical and acoustic images simultaneously. [Michinori Iwata] ©Shogakukan "> Principles of an ultrasonic microscope Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
超音波を試料に当て、その反射または透過波を利用して像を見る顕微鏡。超音波もギガヘルツ級になると水中の波長が1マイクロメートル程度となり、光学顕微鏡と同程度の分解能が得られる。また、音波であることから試料の光学的な性質に左右されず、試料の表面像のほか表面下の構造も見ることができ、無染色で生体組織も観察できる。 超音波を顕微鏡に利用する考えは、1930年にソ連のソコロフにより提唱された。しかし、本格的な開発が始められたのは1973年に、アメリカ、スタンフォード大学のクェートらが、集束した超音波ビームを用いた走査型の顕微鏡を考案してから研究が盛んとなった。 走査型超音波顕微鏡には反射型と透過型のものがあり、分解能と侵透の深さに応じて、100メガから3ギガヘルツくらいの超音波が使用される。反射型は、音響レンズの上面に貼(は)り付けた圧電素子で超音波パルスの送受を行う。送信時と受信時のパルスを分離する必要があるが、試料に対する制限が少なく、物質の弾性的な差を表現しやすい利点がある。透過型は、2個の対向した音響レンズ間に試料を入れ、超音波の送受を各音響レンズに貼り付けた圧電素子で行うものである。製品化されているものは前者が多いが、いずれも超音波の試料への照射を容易にするために、試料と音響レンズ間を液体で満たしている。音響レンズにはサファイアの結晶などが使われる。形は上面を平坦(へいたん)に研磨したじょうご形で、下部に50~100マイクロメートルの凹(くぼ)みがつくられており、大きさは直径・高さとも1センチメートルに満たない。超音波はこの凹みを通って試料と超音波パルスを送受する。1ギガヘルツの超音波を送受する圧電素子の厚さは1マイクロメートル程度ときわめて薄い。 走査型の超音波顕微鏡で超音波パルスを照射してそのエコーまたは透過した信号を取り込みながら試料台をすこしずつ水平に動かし、信号の強弱を各位置に応じた箇所に描画する。この方式により水平方向の分解能は1マイクロメートル、深さ方向の分解能が2マイクロメートル程度のものが得られている。深さ方向の分解能が0.3マイクロメートルの超音波顕微鏡も干渉顕微鏡法を用いて実現されている。 光走査型超音波顕微鏡とよばれるものは、超音波を斜め下から試料全面を照射し、試料に生じる微細な変化をレーザー走査によりとらえるもので、光学像と音響像が同時に得られる。 [岩田倫典] ©Shogakukan"> 超音波顕微鏡の原理 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Ultrasonic testing - Ultrasonic testing
>>: Ultrasonic diagnosis imaging
...It is also characteristic of Japan that franch...
…the collective name for the three supranational ...
...Agriculture has focused on rice and tobacco cu...
An Old World monkey (illustration) of the Cercopit...
A town in Shari District, eastern Hokkaido. To the...
An oligarchic government was established in Athens...
…In the broadest sense, it is the trajectory of a...
1906‐1987 Ecuadorian diplomat and politician. Born...
A method of processing metal surfaces and shapes ...
A village in Kashima County in the southeastern pa...
…Okinawa Prefecture, located northwest of Okinawa...
...The good spirit Lilac prophesies that the prin...
...Although much about its function remains unkno...
One of the Mahayana scriptures that was establish...
〘Noun〙① A person skilled in renga. A renga writer....