Transcendental numbers

Japanese: 超越数 - ちょうえつすう
Transcendental numbers

A number that is not a solution to an algebraic equation is called a transcendental number. An equation with one variable and integer coefficients is called a (one-variable) algebraic equation. In other words, a 0 x n + a 1 x n -1 +……+ a n -1 x + a n =0
( a0 , a1 ,……, an are integers and a0 0)
An equation of the form is an algebraic equation. n is called the degree of the equation. Complex numbers (including real numbers; the same applies below) that are solutions to an algebraic equation are called algebraic numbers. For example, , , and are x 2 -2=0, x 3 -5=0, and x 2 +1=0, respectively.
Since all of these are solutions of , they are all algebraic numbers. Also, all rational numbers are algebraic numbers. However, it can be proven that they are not solutions of pi, the base of the natural logarithm, e , or any algebraic equation. Such complex numbers are transcendental numbers.

Generally, real numbers are classified into rational numbers and irrational numbers, but irrational numbers are further classified into real algebraic numbers and real transcendental numbers. The set of algebraic numbers is countably infinite, but the set of real numbers is uncountable, so the set of transcendental numbers is also uncountable. In other words, there are far more transcendental numbers than algebraic numbers. In recent years, Allan Baker (1939- ) from England has obtained the following remarkable theorem that encompasses many of the theorems that have been established up to that point. If α 1 , …, α n are complex numbers that are neither 1 nor 0, and 1, β 1 , …, β n are algebraic numbers that are linearly independent in the field of rational numbers, then … is a transcendental number. This immediately shows that in addition to the aforementioned π, e ,,, etc. are transcendental numbers.

[Tsuneo Adachi]

[Reference item] | Algebraic equations

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

代数方程式の解とはならない数を超越数という。一変数で整係数の方程式を(一変数)代数方程式ということにする。つまり
 a0xn+a1xn-1+……+an-1x+an=0
 (a0,a1,……,anは整数でa0≠0)
の形の方程式が代数方程式である。nをその方程式の次数という。ある代数方程式の解となる複素数(実数の場合を含む。以下同様)を代数的数という。たとえば、,,はそれぞれ
 x2-2=0, x3-5=0, x2+1=0
の解だからいずれも代数的数である。またすべての有理数は代数的数である。しかるに、円周率π、自然対数の底e、またはどんな代数方程式の解にもならないことが証明される。このような複素数が超越数である。

 一般に実数は有理数と無理数に分類されるが、無理数はさらに実の代数的数と実の超越数とに分類されることになる。代数的数の全体は可算無限個であるが、実数の全体は非可算だから、超越数の全体も非可算である。つまり超越数のほうが、代数的数より圧倒的に多い。近年、イギリスのベーカーAllan Baker(1939― )によって、それまでに得られた定理の多くを包合する次のような著しい定理が得られた。α1、……、αnを1でも0でもない複素数とし、1、β1、……、βnを有理数体上一次独立な代数的数とすると、……は超越数である。これにより、前述のπ、e、のほか、,,などが超越数となることが、ただちに知られる。

[足立恒雄]

[参照項目] | 代数方程式

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Zhang Yan - Choen

>>:  Gut X-ray examination

Recommend

Geranium shikokianum (English spelling) Geraniumshikokianum

…[Mitsuko Shimizu]. … *Some of the terminology th...

Roach, Hal

Born January 14, 1892 in Elmira, New York [Died] N...

Houda Hills

A hilly area on the border between Ishikawa and T...

Alkaline - Alkaline

〘 noun 〙 The properties of an alkali. In an aqueou...

Gampsocleis ussuriensis (English spelling) Gampsocleisussuriensis

… Insect seller [Tokuji Chiba]. . . *Some of the ...

Treaty of Armand

A treaty concluded in 1883 between France and Vie...

Universitas Dorpatensis (English spelling)

…A prestigious university in Tartu, Estonia. Foun...

Rotational viscometer

A viscometer that uses the rotational method to me...

Oyacho - Ooyachi

…The city area was also the base of the Ise Taira...

International Geophysical Year

The IGY was an internationally-coordinated geophy...

Kikuchi River

A river that flows through northern Kumamoto Pref...

Appleton Formation

…After that, he served as professor of physics at...

Buried pile - Umekomikui

...The footing part can take the form of an indep...

Koshiro Matsumoto

A Kabuki actor whose stage name has been Kouraiya...

Zhoukoudian Animal Community - Zhoukoudian Animal Community

Also known as the Zhoukoudian fauna. A group of fo...