Earthquake resistant structure - taishinkouzo (English spelling) earthquake resistant structure

Japanese: 耐震構造 - たいしんこうぞう(英語表記)earthquake resistant structure
Earthquake resistant structure - taishinkouzo (English spelling) earthquake resistant structure

A building structure that is built to meet the requirements for resistance to earthquake shaking (strength and toughness (deformation performance)). Architectural and civil engineering structures must not only support their own weight and the load placed on floors, beams, girders, etc., but also be safe against natural external forces such as earthquakes, wind, and snow. In Japan, where earthquakes are particularly frequent, the stresses that occur in structures during earthquakes are generally much greater than other external forces, and therefore structures must be designed and constructed to be able to fully withstand major earthquakes, and structures built with this in mind are called earthquake-resistant structures.

[Takuji Kobori, Hiroo Kanayama]

Earthquake-resistant structure and calculation method

To talk about familiar buildings, earthquake-resistant structures are generally constructed by connecting columns, beams, floors, and walls (or braces) together at their joints so that the building as a whole can resist the destructive force of an earthquake. These structures can be classified according to the materials used: wood, reinforced concrete, steel-reinforced concrete, and steel-framed. The design concepts used to realize these structures can be broadly divided into the following two types of structures.

(1) A rigid structure that uses earthquake-resistant walls and braces to resist earthquake forces and minimize deformation of the building.

(2) A flexible structure that gives the building sufficient deformation capacity and extends the building's natural period of shaking (the time it takes for the building to shake once and then return to its original position), thereby reducing the overall seismic force acting on the building in relation to its size.

In addition, there are two main methods used to calculate the stresses and deformations that occur in a building's framework, which form the basis for the earthquake-resistant design of the building's framework:

One is called static calculation (or analysis), which is a practical calculation method that converts dynamically captured seismic forces into static ones and solves them, and the other is the so-called dynamic analysis method that converts the framework into a mathematical model and tracks its behavior during an earthquake from moment to moment. Currently, the former method is generally used for low- to mid-rise buildings, and the latter method for high-rise buildings. Design methods that are based on verification using each calculation method are called static design method and dynamic design method.

In order to realize an earthquake-resistant structure, it is necessary to understand the behavior of a building in resisting an earthquake not only within the elastic range but also in the region beyond that limit (called the plastic range), including the seismic motion and properties of the supporting ground that serve as the basis for predicting the forces and deformations that will occur in a building due to an earthquake, and the strength, deformation, and ductility properties of the structural materials themselves. As a result, a great deal of earthquake resistance research has been accumulated from the past to the present.

[Takuji Kobori, Hiroo Kanayama]

History of earthquake resistance research and building regulations

In this way, research into earthquake resistance of buildings has progressed thanks to the efforts of many predecessors, but behind this progress lies the experience of damage caused by several major earthquakes in the past and the knowledge gained from those investigations.

Japan's earthquake resistance research began in the wake of the Nobi earthquake in 1891 (Meiji 24), and was further stimulated by the bitter experience of the Great Kanto earthquake in 1923 (Taisho 12). After a period of booming earthquake resistance research up until around 1940 (Showa 15), the basis for the conventional methods (design and calculation methods) still used for low- and mid-rise buildings was established during this period. This earthquake resistance design method was reflected in the predecessor of the Building Standards Act (Urban Building Act) enacted in 1950, and was truly a world leader. Then, in addition to the results of research into the dynamics of buildings that blossomed later, analysis of earthquake observation records using strong motion seismographs and research results into earthquake response analysis methods for buildings using computers, which were also developed at the same time, made it possible to realize skyscrapers.

During this period, the Fukui earthquake of 1948 (Showa 23), the Niigata earthquake of 1964, the Tokachi-oki earthquake of 1968, and the Miyagi-oki earthquake of 1978 occurred. The damage to some buildings in these recent earthquakes revealed the inadequacies of the conventional design methods. At the same time, the accumulation of earthquake records and the rapid development of means (computers) for calculating the forces and deformations occurring in buildings led to the so-called New Earthquake-Resistant Design Method, which was incorporated into the revision of the Building Standards Act in 1981, based on the knowledge gained as a result of a joint government-academia-private project that lasted for five years from 1972. The gist of this method is that it sets the target earthquakes at two levels, small and medium-sized earthquakes and large earthquakes, and specifies detailed regulations for structural calculations according to the type and height of the structure, and provides for sufficient consideration of not only the strength of buildings but also their deformability for each level. Buildings designed based on this approach sustained only minor damage in the 1995 Great Hanshin-Awaji Earthquake (Hyogo Prefecture Southern Earthquake), and the validity of this approach and methodology came to be widely recognized. In 2000, the Building Standards Act underwent a major revision, the first in 50 years, and the "Limit Strength Calculation Method" was introduced in parallel with the previous "New Earthquake-Resistant Design Method." This calculation method specifies "rare earthquake motions" and "extremely rare earthquake motions" as input earthquake motions, and incorporates a simplified version of the dynamic design method. It is characterized by the incorporation of the effects of damping (the ability to reduce the energy generated in a moving object and reduce the amplitude) and the effects of interaction between the building and the ground, but the performance required of a building remains the same: sufficient strength and deformation capacity (durability).

[Takuji Kobori, Hiroo Kanayama]

Differences from seismic control and seismic isolation structures

Structural technology for earthquakes is generally classified into earthquake-resistant structures, vibration-control structures, and seismic isolation structures. However, although these differ in terms of technical definition, earthquake resistance, vibration control, and seismic isolation are often collectively recognized as earthquake resistance, so here we would like to clarify the differences in their principles, that is, their respective aims and the requirements for them to be established. The principles of earthquake-resistant structures, vibration-control structures, and seismic isolation structures are described below.

(1) Principles of earthquake-resistant construction Earthquake motion is transmitted directly to the building, and vibrations are generally amplified 3 to 4 times (depending on the period) as you go up the floors. Columns, beams, walls, etc. are designed to withstand the inertial force (earthquake load) and deformation that occurs at that time. The requirements are strength and toughness.

(2) Principle of vibration control structure After earthquake motion is transmitted to a building, the vibration energy is absorbed by the vibration control device, reducing the vibration of the building. Therefore, it is generally possible to ensure safety against larger earthquakes than earthquake-resistant structures. The requirements are strength, toughness, and damping.

(3) Principles of seismic isolation structures By installing seismic isolation devices, the natural period of the building (the time it takes for the building to shake once) is lengthened, avoiding resonance with earthquake motion. This significantly reduces the inertial force acting on the building. However, deformation increases due to the long period. In that it creates a non-resonant system with earthquake motion by extending the period, it is sometimes considered a type of passive vibration control (vibration control not based on electrical control). The requirements are non-resonance and damping.

[Hiroo Kanayama]

[Reference items] | Rigid structure | Flexible structure | Brace | Seismic control structure | Seismic isolation structure

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

地震の揺れに抵抗できる要件(強度と粘り(変形性能))を満たすようにつくられている建物の構造。建築や土木の構造物は、自分自身の重量や、床、梁(はり)、桁(けた)などに積載される荷重を支える以外に、地震や風、雪などによって生ずる自然の外力に対しても安全でなくてはならない。とくに地震の多い日本では、地震時に構造物に生ずる応力が他の外力よりもかなり大きいのが一般的で、したがって大地震に十分に耐えうるように設計・施工される必要があるが、こうした配慮の下につくられる構造を耐震構造とよんでいる。

[小堀鐸二・金山弘雄]

耐震構造の仕組みと計算法

以下、一般になじみの深い建物について述べると、この耐震構造を実現するためには一般的には柱、梁、床、壁(またはブレース)をそのつなぎ目で互いに強剛に緊結して、地震の破壊力に対して建物が一体となって抵抗するようにつくられる。これを構造材料別に分類すると、木造、鉄筋コンクリート造、鉄骨鉄筋コンクリート造、鉄骨造となる。これらの構造を実現するための設計の考え方としては、以下の二つの構造に大別される。

(1)耐震壁やブレース(筋かい)を設けて、地震力に抵抗し建物の変形をできるだけ少なくしようとする剛構造。

(2)建物に十分な変形能力を与え、建物の揺れの固有周期(建物が1回揺れて戻ってくるまでの時間)を長くして、作用する地震力を建物の規模のわりに全体として小さくする柔構造。

 また建物の骨組の耐震設計のもととなる、骨組におこる応力や変形を計算するには、大別して次の二つの手法が用いられている。

 一つは静的計算(または解析)とよばれるもので、動力学的にとらえられた地震力を静力学的に置き換えて解くという実用計算法であり、他は、骨組を数学的モデルに置き換えて地震時の挙動を時々刻々追跡するいわゆる動的解析法である。現在では、中低層建物では前者の、超高層建物では後者の方法の適用が一般的である。それぞれの計算法による検証を軸としてできあがっている設計法を静的設計法および動的設計法とよぶ。

 耐震構造を実現するためには、地震によって建物に生ずる力や変形の予測のもととなる地震動や支持地盤の性質や、構造材料そのものの強度、変形、粘りの性質を含め、建物が弾性範囲のみならず、その限界を超えた領域(塑性域という)までにわたって地震に抵抗する挙動を把握する必要があり、昔から現在に至る非常に多くの耐震研究が積み重ねられてきている。

[小堀鐸二・金山弘雄]

耐震研究と建築法規の沿革

このように建物の耐震研究は多くの先達の努力によって進歩を遂げてきたが、その背景にはなんといっても過去、幾たびかの大地震の被害の経験とその調査に基づく知見があった。

 日本の耐震研究は、1891年(明治24)の濃尾地震を契機として始められ、1923年(大正12)の関東大地震の苦い経験がさらに刺激となり、その後1940年(昭和15)ころまでの耐震研究の興隆期を経て、いまでも中低層建築に使われている慣用法(設計および計算法)の基盤がこの時期に定まっている。この耐震設計法は1950年に制定された建築基準法の前身(市街地建築物法)に反映され、まさに世界に先駆けたものであった。そして、その後に開花した建物の振動学研究の成果に加え、強震計による地震観測記録の分析や、時を同じく発達したコンピュータによる建物の地震応答解析手法の研究成果が相まって超高層ビルも実現するようになったのである。

 また、この間に1948年(昭和23)の福井地震、1964年の新潟地震、1968年の十勝(とかち)沖地震、1978年の宮城県沖地震がおこった。これら近年の地震における一部建物の被害から、従来の設計法の不十分な点も明らかになった。それと同時に、前記の地震記録の蓄積と、建物に生ずる力や変形を算定する手段(コンピュータ)の急速な発展という状況を背景に、1972年から5年間にわたる官学民一体となったプロジェクトの成果として得られた知見を、1981年の建築基準法の改正に取り入れられたのが、いわゆる新耐震設計法である。この骨子は、対象とする地震を中小地震および大地震の二段階に設定し、それに対する構造計算の規定を構造の種類や高さに応じてきめ細かく定め、それぞれに対して建物の強さばかりでなく変形性に関しても十分に配慮するよう規定が設けられたことである。この考え方に基づいて設計された建物が、1995年(平成7)の阪神・淡路大震災(兵庫県南部地震)で被害が軽微であったことから、その考え方および手法の妥当性が広く認識されるに至った。また、2000年には、50年ぶりといわれる建築基準法の大改正があり、それ以前の「新耐震設計法」と並行して、「限界耐力計算法」が導入された。これは「稀(まれ)に起こる地震動」と「極めて稀に起こる地震動」を入力地震動として規定し、動的設計法の概念を簡易化して取り入れた計算法で、減衰(運動する物体に生じるエネルギーを減少させ振幅を小さくさせる働き)の効果や建物と地盤の相互作用の効果を取り入れるのが特徴であるが、建物への要求性能が、強度と変形能力(粘り)が十分確保されていること、という点では変わりはない。

[小堀鐸二・金山弘雄]

制震・免震構造との違い

地震に対する構造技術としては一般に耐震構造、制震構造、免震構造に分類される。ただし、これらは技術的定義からは異なるものであるが、これらの耐震、制震、免震をひっくるめて耐震と認識されている場合が多いので、ここで、それらの原理すなわち、それぞれのねらいと、それが成立する要件の差異を明確にしておきたい。以下に耐震構造、制震構造、免震構造の原理を記述する。

(1)耐震構造の原理 地震動がそのまま建物に伝わり、上層階に行くにしたがって振動が一般に3~4倍(周期に依存)に増幅する。そのとき生じる慣性力(地震荷重)、変形に耐えられるように柱・梁・壁などを設計する。要件は強さと粘りである。

(2)制震構造の原理 地震動が建物に伝わった後、制震装置で振動エネルギーを吸収し、建物の振動を小さくする。そのため一般に耐震構造より大きな地震に対して安全性を確保することができる。要件は強さと粘りおよび減衰である。

(3)免震構造の原理 免震装置を設置することで、建物の固有周期(建物が1回揺れる時間)を長周期化して、地震動との共振を回避する。それにより建物に生じる慣性力を大きく低減する。ただし、変形は長周期に起因して増大する。周期の延長によって地震動との非共振系を図るという点で、パッシブ制震(電気制御によらない制震)の一つに位置づけられる場合もある。要件は非共振と減衰である。

[金山弘雄]

[参照項目] | 剛構造 | 柔構造 | 筋かい | 制震構造 | 免震構造

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Adult teacher - Taijin Sensei (English)

>>:  The Great Qin Dynasty's Jingjiao Popular Chinese Monument - The Great Qin Dynasty's Jingjiao Popular Chinese Monument

Recommend

Eleorchis japonica (A.Gray) F.Maekawa

A small orchid plant (illustration) that grows in ...

November group

… In this way, expressionist art around the time ...

Deborah

...588m above sea level. According to the Old Tes...

Pillow words - pillow words

A modifying phrase used mainly in waka poetry. It...

Tanjung Priok (English spelling)

Jakarta is the outer port of the capital city of I...

Axe of Vengeance

…In 1510 (the 5th year of the Zhengde era), the e...

incubation

…It is widely known that dreams played a substant...

IMAGINA

...It tours American cities every year, and the n...

Amdo dialect - Amdo dialect

...the language of the Tibetan people living in t...

Trade liberalization - liberalization of trade

To promote international trade, it is necessary to...

Harutaka Ooka - Ooka Shumpoku

Year of death: June 19, 1763 (July 29, 1763) Year ...

Abnormal psychology

It is a branch of psychology that describes abnor...

Spiroplasma

...At first, the leaves turn yellow and the core ...

vecindad

…Fourthly, a feature not only of Mexico but of La...

Cult Cat - Karutoneko

...Breeds are broadly divided into short-haired a...