When a relationship P(x,y) is given, some number of y's that satisfy this relationship are determined for x. In other words, when a pair of x and y satisfies the relationship P(x,y), y is said to correspond to x through this relationship. For example, in the case of the relationship between real numbers, x 2 +y 2 =1, if x is 3/5, then there are two y's: 4/5 and -4/5. However, when x is 2, there is no corresponding y. Also, x=y corresponds to x itself, and is called the identity correspondence. The set of x's for which there exists a y such that P(x,y) is called the domain of this correspondence, and the set of y's for which there exists such an x is called its range. When there exists exactly one y for any x in the domain, it is called a unique correspondence. In this case, a mapping f is determined that associates a unique y with x. In other words, P(x,y) is equivalent to y=f(x). A unique correspondence is sometimes simply called a correspondence. Furthermore, when there exists exactly one x for any y in the range, this correspondence is called a one-to-one correspondence. This is equivalent to a bijection. Up until now, we have associated y with x in P(x,y), but we can also associate x with y. This is called the inverse correspondence of the original correspondence. The product of the two correspondences determined by P(x,y) and Q(y,z) is the one that associates z with x such that there exists a y such that P(x,y) and Q(y,z). [Namba Kanji] [Reference] | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
関係P(x,y)が与えられたとき、xに対してこの関係を満足するyが何個か定まる。つまり、xとyの組が関係P(x,y)を満足するとき、yはxにこの関係で対応しているという。たとえば、実数の間の関係x2+y2=1のような場合にはxが3/5ならばyは4/5と-4/5の二つがある。しかし、xが2のときは、これに対応するyは存在しない。また、x=yはxにそれ自身を対応させており、恒等対応とよばれている。 P(x,y)となるyが存在するxの全体をこの対応の定義域、そのようなxが存在するyの全体をその値域とよぶ。定義域に属する任意のxに対してただ一つのyが対応しているとき一価な対応という。このような場合xにただ一つ決まるyを対応させる写像fが定まる。すなわちP(x,y)はy=f(x)と同値な関係となる。一価な対応をもって単に対応とよぶことがある。さらに値域に属する任意のyに対してただ一つのxが定まるとき、この対応は一対一対応とよばれる。これは全単射というのと同値である。いままでP(x,y)のxにyを対応させたが、逆にyにxを対応させることもできる。これをもとの対応の逆対応とよぶ。P(x,y)およびQ(y,z)によって定められる二つの対応の積は、xに対してP(x,y)かつQ(y,z)となるyが存在するようなzを対応させるものである。 [難波完爾] [参照項目] | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Rheum officinale (English spelling)
>>: Daien Calendar - Taienreki
…On the other hand, the white pulp, a lymphatic t...
…A town on the western tip of Java, Indonesia. Al...
...A settlement site from the late Yayoi period t...
A former town in Tamura County in the Abukuma High...
…Since the Middle Ages, it has monopolized higher...
Poet, novelist, and critic. Born into the Kodama ...
…It is a syndrome that appears in association wit...
…Following in the footsteps of Rhazes, he wrote t...
…Tigers, lynx, river boar, ruffed lemurs, drills,...
Japan's first jet fighter took flight in 1945,...
In Sanskrit, it means a period of life. In ancient...
…Sanskrit name: Abhidharmakośabhāṣya. Abbreviated...
Fellowship of Reconciliation : Yuwakai, a Christia...
…The capital of the province of North Brabant in ...
Also called oncogene. A general term for genes tha...