The length of the section I = [a, b] on the line is ba, which is represented as |I|. The problem is whether it is possible to define a quantity m(E) that always corresponds to the length of a set E on the line. In that case, it is ideal for the quantity m(E) (called the measure of E) to have the following properties. (1) m(E) ≥ 0 is defined for all sets E, The concept of measure can be abstracted as follows. Take any set X and consider a family M of its subsets. When a non-negative number m(E) is defined for an element E∈M of M, and this satisfies the previously mentioned (1) to (3), E∈M is called a measurable set, m(E) is called the measure of E, and collectively {X,M,m} is called a measure space. When a measure space is given, it is possible to define the Lebesgue integral for the functions defined there, and the merit of the Lebesgue integral comes from the complete additivity of the measure space. In a measure space, especially when the entire space X has measure 1, it is called a probability space, and probability theory is developed here. Finally, when the set X is a topological group, and the product of a,b∈X is written as ab, instead of the previously mentioned (1) to (3) and (4), we can write [Haruo Sunouchi] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
直線上の区間I=[a,b]の長さはb-aであるが、これを|I|で表す。直線上の集合Eにつねに長さに相当するような量m(E)を定義できないかという問題がある。そのとき量m(E)(Eの測度という)は理想的には次の性質をもつことが望ましい。 (1)m(E)≧0はすべての集合Eに定義され、 測度の概念は次のように抽象化することができる。任意の集合Xをとり、その部分集合のある族Mを考える。Mの要素E∈Mに、負にならない数m(E)が定義されて、これが前に述べた(1)~(3)を満足するとき、E∈Mを可測集合、m(E)をEの測度といい、これらをひとまとめにして{X,M,m}を測度空間という。測度空間が与えられると、そこで定義された関数にルベーグ積分を定義することができるが、ルベーグ積分のよさは、測度空間の完全加法性による。測度空間で、とくに全空間Xが測度1をもつとき、確率空間といい、確率論はここで展開される。最後に、集合Xが位相群のとき、a,b∈Xの積をabと書くとき、前述の(1)から(3)までと、(4)のかわりに、 [洲之内治男] 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Speed - Sokudo (English spelling) velocity
Years of birth and death unknown. A politician fr...
A great German philosopher, he summarized Neoplat...
Italian playwright. Born into a noble bourgeois f...
A large, beautiful species of the family Musciacea...
A general term for taxes and other charges levied...
An electrical communication cable designed to tra...
This culture flourished in the late Heian period, ...
This refers to the flow of nuclear fuel used in a...
A Confucian scholar of the Eclectic School in the...
A cultivation method mainly seen in Japan's pa...
The question of whether a simply connected, connec...
…[Tadashige Nabe]. . … *Some of the terminology t...
A dance term. The act of creating or arranging dan...
...After this, he went to Kanto every year and co...
A deciduous tree of the Cleavaceae family. It grow...