Measure - Sokudo

Japanese: 測度 - そくど
Measure - Sokudo

The length of the section I = [a, b] on the line is ba, which is represented as |I|. The problem is whether it is possible to define a quantity m(E) that always corresponds to the length of a set E on the line. In that case, it is ideal for the quantity m(E) (called the measure of E) to have the following properties.

(1) m(E) ≥ 0 is defined for all sets E,
(2) When E is in the interval I, m(I)=|I|
(3) When {E n } have no intersection with each other,

(4) If we express the translation of set E by a distance a as a+E, then
m(a+E)=m(E)
However, it turns out that such a measure cannot be defined for all sets. Lebesgue first covers E with a countable sequence of intervals {I n } (i.e.

(Assuming that)

Consider the following. Among the various ways of covering E, the minimum value of (*) is represented as m * (E) and is called the exterior measure of E. The exterior measure is defined for any set E, as follows:
m * (E)≧0, m * (∅)=0
(∅ is the empty set)
If E ⊂ F then m * (E) ≦ m * (F)
These have basic properties as quantities that measure size, but even when sets E and F have no intersection,
m * (E∪F) = m * (E) + m * (F)
(Additivity)
Therefore, for any set A,
m * (A)=m * (A∩E)+m * (A∩Ē)
A set E for which the above holds is called a measurable set (Ē is the complement of E),
Let m(E) = m * (E) be defined as the measure of E. Then, if m * (E) = 0, then E is a measurable set, and all basic sets such as open sets and closed sets are measurable sets. In this way, if we consider the measure only in terms of the family M of measurable sets, the measure has the properties (1) to (4) mentioned above.

The concept of measure can be abstracted as follows. Take any set X and consider a family M of its subsets. When a non-negative number m(E) is defined for an element E∈M of M, and this satisfies the previously mentioned (1) to (3), E∈M is called a measurable set, m(E) is called the measure of E, and collectively {X,M,m} is called a measure space. When a measure space is given, it is possible to define the Lebesgue integral for the functions defined there, and the merit of the Lebesgue integral comes from the complete additivity of the measure space. In a measure space, especially when the entire space X has measure 1, it is called a probability space, and probability theory is developed here. Finally, when the set X is a topological group, and the product of a,b∈X is written as ab, instead of the previously mentioned (1) to (3) and (4), we can write
(4) 'm(a -1 E) = m(E)
The measure that requires this is called the Haar measure, and it plays an important role in analysis on topological groups.

[Haruo Sunouchi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

直線上の区間I=[a,b]の長さはb-aであるが、これを|I|で表す。直線上の集合Eにつねに長さに相当するような量m(E)を定義できないかという問題がある。そのとき量m(E)(Eの測度という)は理想的には次の性質をもつことが望ましい。

(1)m(E)≧0はすべての集合Eに定義され、
(2)Eが区間Iのときは
   m(I)=|I|
(3){En}が互いに共通部分をもたないとき、

(4)集合Eをaだけ平行移動することをa+Eで表すと、
  m(a+E)=m(E)
 しかし、このような測度を、すべての集合に定義することはできないことがわかっている。ルベーグは、Eをまず可算個の区間の列{In}で覆い(つまり

とする)、

を考える。Eのいろいろな覆い方のうち、(*)の最小値をm*(E)で表し、Eの外測度という。外測度は任意の集合Eに対して定義されており、
  m*(E)≧0, m*(∅)=0
   (∅は空集合)
  E⊂Fならばm*(E)≦m*(F)
など、大きさを測る量としての基本的な性質をもっているが、集合E、Fが共通部分をもたないときでも、
  m*(E∪F)=m*(E)+m*(F)
   (加法性)
とは限らない。そこで、任意の集合Aに対し、
  m*(A)=m*(A∩E)+m*(A∩Ē)
が成立する集合Eを可測集合といい(ĒはEの補集合)、
m(E)=m*(E)をEの測度と定義する。すると、m*(E)=0ならばEは可測集合、また、開集合や閉集合などの基本的な集合はすべて可測集合になる。このように、測度を可測集合の族Mだけで考えることにすると、測度は前述の(1)~(4)の性質をもつ。

 測度の概念は次のように抽象化することができる。任意の集合Xをとり、その部分集合のある族Mを考える。Mの要素E∈Mに、負にならない数m(E)が定義されて、これが前に述べた(1)~(3)を満足するとき、E∈Mを可測集合、m(E)をEの測度といい、これらをひとまとめにして{X,M,m}を測度空間という。測度空間が与えられると、そこで定義された関数にルベーグ積分を定義することができるが、ルベーグ積分のよさは、測度空間の完全加法性による。測度空間で、とくに全空間Xが測度1をもつとき、確率空間といい、確率論はここで展開される。最後に、集合Xが位相群のとき、a,b∈Xの積をabと書くとき、前述の(1)から(3)までと、(4)のかわりに、
(4)′m(a-1E)=m(E)
を要求した測度をハールの測度といい、位相群のうえで解析学をするのに重要な役割をする。

[洲之内治男]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Speedometer - speedometer

>>:  Speed ​​- Sokudo (English spelling) velocity

Recommend

Yan Ying

Years of birth and death unknown. A politician fr...

Hegel - Georg Wilhelm Friedrich Hegel

A great German philosopher, he summarized Neoplat...

Giacosa - Giuseppe Giacosa

Italian playwright. Born into a noble bourgeois f...

Rock moss - Rock moss

A large, beautiful species of the family Musciacea...

Public taxes and fees

A general term for taxes and other charges levied...

Communication cable

An electrical communication cable designed to tra...

Hiraizumi Culture

This culture flourished in the late Heian period, ...

Nuclear fuel cycle

This refers to the flow of nuclear fuel used in a...

Heishuu Hosoi

A Confucian scholar of the Eclectic School in the...

Early cultivation - Soukisaibai

A cultivation method mainly seen in Japan's pa...

Poincaré conjecture - Poincaré's conjecture

The question of whether a simply connected, connec...

Limax marginatus (English spelling) Limax marginatus

…[Tadashige Nabe]. . … *Some of the terminology t...

Choreography - Choreography

A dance term. The act of creating or arranging dan...

Cross-sect alliance - Cross-sect alliance

...After this, he went to Kanto every year and co...

Clethra barbinervis - Clethra barbinervis

A deciduous tree of the Cleavaceae family. It grow...