Shipbuilding industry

Japanese: 造船業 - ぞうせんぎょう
Shipbuilding industry

The industry that makes ships. This section focuses only on the shipbuilding industry as a modern industry. Please also refer to the entries for "shipbuilding" and "ships."

[Yoshiro Miwa]

Overview of the Japanese shipbuilding industry.

Japan's first iron ship, the Niigata Maru (64 tons), was built in 1871 (Meiji 4), followed by the steel ship Chikugo Maru (610 tons) in 1890. Without the foundations of modern steel and machinery industries, Japan's shipbuilding industry started late compared to Europe and the United States, but under the strong protection of the government, it made great strides through the Sino-Japanese War, the Russo-Japanese War, World War I, and World War II. In terms of both technology and quantity, Japan's shipbuilding industry had already reached the ranks of world leading nations before Japan's defeat in World War II. There is no need to look at the examples of the warships Mutsu, Nagato, Yamato, and Musashi to see that Japan's shipbuilding technology had reached a high level before the war, which was rare among Japanese industries.

After the Second World War, production resumed with policy support known as "planned shipbuilding," and although there were no warships this time, Japan became the world's number one shipbuilding nation, focusing mainly on oil tankers. The catalyst for this development was the closure of the Suez Canal during the Suez War in 1956. The closure of the canal led to a boom in larger tankers in the world's shipping industry, but this boom in large tankers was absorbed almost entirely by Japan's shipbuilding industry, and Japan came to control more than half of the world's shipbuilding volume. However, the oil shock at the end of 1973 caused an excess of tanker tonnage in the world, and the country suddenly fell into a serious shipbuilding recession. Although Japan still ranks number one in the world, orders for new ships have plummeted from 33.79 million gross tons at its peak in 1973 to 3.22 million gross tons at its bottom in 1978 (Showa 53), a drop of one-tenth of that amount. Moreover, in the 10 years since its peak, orders have averaged less than one-third of that amount, and companies have been withdrawing from the shipbuilding industry one after another.

[Yoshiro Miwa]

Historical Characteristics of Japan's Shipbuilding Industry

Modern shipbuilding was brought about by two revolutionary advances in technology. The first was the shift from sails to steam engines as a propulsion mechanism, as seen in the American ship Clermont in 1807 (with a British engine). The other was the shift from wooden to iron hulls, as seen in the English Aaron Manby in 1821. These two major advances were later replaced by iron to steel ships (the Ludowald in 1873) and the former by steam turbines and diesel engines from the 1890s to the early 20th century, and with these advances ships became faster and larger.

In contrast, Japan's first steamship, Tamauragata, was built in 1857 (Ansei 4), and the iron ship Niigata Maru, as mentioned above, was built in 1871 (Meiji 4) to a foreign design, but both were about half a century behind Europe and the United States. However, the steel ship Chikugo Maru was built in 1890, only 17 years behind, even though it was made from imported mild steel, and the first steam turbine ship, Tenyo Maru, was built in 1908 (Meiji 41), which shows almost no difference in time with Europe and the United States.

In other words, while steam engines and iron ships, which were the foundations of the modern shipbuilding industry, were both half a century behind, steel ships, steam turbines, and diesel engines, which paved the way for larger and faster ships, were not so far behind. This was fortunate for the subsequent development of Japan's shipbuilding industry. Of course, while Europe and the United States spent half a century or a century accumulating the basic technologies for modern shipbuilding before embarking on steel ships, turbines, and diesel engines, Japan had to tackle these issues in half the time, 20 to 50 years, and without any basic accumulation of technology, that is, related machinery and steel technology, or even financial resources. In this respect, it can be said that there was a factor that led to the unique form of development of Japan's shipbuilding industry thereafter.

In Japan, in the final days of the Tokugawa shogunate, the construction of shipyards was promoted by the shogunate and powerful feudal domains due to the need for national defense, and these had to be comprehensive factories for ironmaking, machinery, and shipbuilding, and they had to be completely dependent on foreign countries for technology. These shipyards, which were confiscated by the government with the Meiji Restoration, were mainly engaged in the construction of naval vessels as military arsenals, and the development of private shipyards came about through the transfer of government-run shipyards around 1887 and through promotion policies such as the Shipbuilding Promotion Act (1896) following the Sino-Japanese War. In 1876, the government leased the Ishikawajima Shipyard and Yokohama Steel Works, which had previously been established by the Mito domain, to Hirano Tomiji (later known as the Ishikawajima Shipyard), in 1884 the Nagasaki Shipyard to Iwasaki Yataro (later known as the Mitsubishi Nagasaki Shipyard), and in 1886 the Hyogo Shipyard to Kawasaki Shozo (later known as the Kawasaki Shipyard), and these were the foundations upon which private shipyards were established.

After that, through the Sino-Japanese War, the Russo-Japanese War, and World War I, Japan's shipbuilding industry made great strides under the government's tireless protection, and after World War I, its shipping tonnage reached 3 million gross tons, making it the world's fourth largest maritime nation, and by 1926 (Showa 1), it had surpassed 4 million gross tons, making it third largest. In 1941, it had reached 6 million gross tons. During World War II, a large number of wartime standard ships were built, and in 1944, 1.69 million gross tons were completed, marking the highest shipbuilding output before the war.

However, after the Second World War, the merchant fleet, which had exceeded 6 million gross tons before the war, was reduced to just over 1.5 million gross tons after the war, and most of the excellent ships were lost. Of the ships that remained, two-thirds were wartime standard ships, so the fleet was devastated. However, the damage to shipyards caused by the war was relatively light.

[Yoshiro Miwa]

Postwar World Shipbuilding

Looking at the trends in the launch volume of the world's major shipbuilding countries, the UK was number one in 1950 and 1955, but by 1957 Japan had already surpassed the UK in terms of construction volume, reaching 2.43 million gross tons. Since then, while other countries around the world were in a slump, Japan alone achieved explosive growth, and since 1965 has monopolized almost half of the world's shipbuilding volume.

The trend toward larger tankers resulting from the closure of the Suez Canal mentioned earlier saw Japanese shipyards breaking records one after another, with Japan capturing most of the large orders for 100,000-ton, 300,000-ton, and 500,000-ton tankers.

Looking at the state of new ship construction around the world in 1973, 36% were domestic ships and 64% were export ships. In Japan alone, 30% were domestic ships and 70% were export ships, showing that ships had become international commodities.

Looking at the breakdown of the world's total shipping volume by ship type, at its peak in 1975, oil tankers accounted for an overwhelming 22.73 million gross tons (66%) of the total shipping volume of 34.2 million gross tons. However, at its bottom in 1980, the total shipping volume fell sharply to one-third at 13.1 million gross tons, of which oil tankers in particular accounted for just under 20% at 3.94 million gross tons, and their share of the total shipping volume came to just 30%. Looking at the breakdown of the world's shipping volume by ship type, in 1955 oil tankers accounted for 26% and "other" cargo ships for 74%, but by 1976 the breakdown had reversed, with oil tankers accounting for 45%, or-bulk ships (bulk carriers that carry ore, coal, grain, etc., or combined oil and ore carriers that can carry both bulk and oil), and "other" cargo ships for 30%.

[Yoshiro Miwa]

Postwar Japanese Shipbuilding Industry

Until 1973

As of the end of 1973, the number of factories and employees in Japan's shipbuilding industry was 593 steel shipbuilding factories with over 170,000 employees, plus over 80,000 outside workers, for a total of 254,000 people, and 328 wooden shipbuilding factories with a total of approximately 3,500 employees.

In the ten years from 1964 to 1973, the number of employees in steel shipbuilding factories increased by only about 20%, but the number of ships launched during this period increased by about fourfold, demonstrating a remarkable improvement in labor productivity.

This is the result of thorough automation and labor-saving measures, such as the construction of larger ships, the construction of highly efficient large shipyards, and the rationalization of facilities. For example, the riveting method was replaced by a welded structure, and the block construction method was adopted, in which the hull is divided into several blocks and assembled and then joined together in a dock. Furthermore, early outfitting was implemented, in which outfitting work is carried out at the block assembly stage. In the past, various pipes and outfitting work was carried out in open air on the sea surface after launching, which took time, but if it is done at the block stage, it can be done indoors without being affected by weather, which is more efficient. However, outfitting the piping and other parts of the blocks and then joining the blocks together later is only possible if there is technology that can precisely measure the positioning and dimensional accuracy errors of the various pipes, etc., all the way to their ends.

Also, in terms of the design stage, ships are inherently absolutely safe on the water, and since changing existing designs is likely to be risky, it is customary to be extremely conservative. However, Japan, for example, developed a "chunky" ship. In other words, the wider the hull of a tanker, the more economical the ratio of the outer hull to the internal volume that can be loaded. However, the chunkier it is, the greater the water resistance and the slower the speed. Japan came up with the bulbous bow to overcome this, and broke with conventional wisdom to successfully design a large ship. Also, shipyards were traditionally lined with cranes. However, the newly built Yokohama Shipyard of Ishikawajima-Harima Heavy Industries (now IHI) completely eliminated vertical movement by cranes (because it would waste energy in transportation), and instead focused on horizontal movement. To take an extreme example, it was revolutionary to eliminate all cranes except for large cranes used for bringing in steel materials from outside. In addition, breaking with the common belief that ships are made to order, they introduced a conveyor system and started flow production. Of course, unlike the conveyor system seen in automobile factories, workers work on large steel plates that move slowly. Furthermore, the welding method was also different. Conventionally, one side of a large steel plate was welded, then it was turned over with a crane and welded from the other side. Instead, they developed a technology to weld both sides at once from one side without turning it over. There are countless things to list, such as automation, labor saving, design changes, and shortened construction time. In addition, by 1973, they had finally completed a large dock that could build up to 1 million deadweight tons, and they could simultaneously work on one large tanker and one third of the next tanker (the part that takes the longest to build), which was completely different from the old-fashioned shipyards in Western countries, and they shortened the construction time by half or one third, making them the world's top. Looking at the top ten ship launching performance by shipyard in 1973, Japan is overwhelmingly superior.

[Yoshiro Miwa]

After the oil crisis

After the oil crisis of 1973, the situation changed completely. Ship orders were highly speculative, as clients anticipated future inflation and rising ship prices, and orders were excessive before the oil crisis. According to a survey by Van Lea & Egers of Norway, tanker orders just before the oil crisis were 198 million deadweight tons, which was 88% of the tanker tonnage in operation. Naturally, after the oil crisis, the volume of cargo movements in the world stagnated on the sea and there was an excess of tonnage, so orders were canceled one after another, and the number of ships launched dropped sharply. The number of employees in Japan's shipbuilding industry was half that of 1973 in 1985, and bankruptcies occurred one after another. Looking at the changes in sales by division of the 10 major shipbuilding companies, in 1974 the shipbuilding division accounted for 45% and other divisions (multiple divisions such as steel structures, machinery, etc.) accounted for 55%, but in 1982, the figures were 20% and 80%, indicating a clear exodus from the shipbuilding division.

The government took measures to combat the recession, such as reducing existing facility capacity by 35% in 1978 and restricting operations through recession cartels under the Antimonopoly Act, but the situation is only getting worse. Sanko Kisen went bankrupt in August 1985. Sanko Kisen was the only company that made a bold bet amid the recession in shipbuilding, and in 1979 it grew rapidly to become the world's largest ship operating company, operating 2,520 ships (1,900 of which were chartered), but it went bankrupt with an accumulated deficit of 168.3 billion yen.

In addition, the recent advances of countries such as South Korea, Taiwan, Brazil and Spain, particularly South Korea's launches in 1984 reached 2.52 million gross tons, approaching 27% of Japan's launches and almost on par with the AWES (13 Western European countries) combined total of 2.76 million gross tons.

While the global excess of shipping tonnage is not expected to be resolved anytime soon, the world shipbuilding map is undergoing a period of great change as these emerging countries enter the market with new ships, especially low-cost tankers.

[Yoshiro Miwa]

"Genzo Hasama and Toshio Motomura (eds.), "Modern Japanese Industry Theory (New Edition)" (1979, Horitsu Bunkasha)

[Reference] | Shipbuilding | Ships
Tokyo Ishikawajima Shipyard
It was located in Tsukudajima, Kyobashi Ward (present-day Tsukuda, Chuo Ward, Tokyo). "Tokyo Ishikawajima Shipyard Product Illustrations" (1903, Meiji 36) National Diet Library

Tokyo Ishikawajima Shipyard

Kawasaki Shipyard (Taisho era)
Higashi-Kawasaki-cho, Kobe City, Hyogo Prefecture (currently Higashi-Kawasaki-cho, Chuo Ward, Kobe City). Photo Collection of Famous Places and Historic Sites of Japan, Kinki Region (1918, Taisho 7), National Diet Library

Kawasaki Shipyard (Taisho era)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

船舶をつくる産業。本項では、近代産業としての造船業に限定して解説する。なお、「造船」「船」などの項目もあわせ参照されたい。

[三輪芳郎]

日本の造船業の概観

日本最初の鉄船、新潟丸(64トン)が建造されたのが1871年(明治4)、鋼船筑後(ちくご)丸(610トン)が建造されたのは1890年であった。近代的な鉄鋼業や機械工業の基礎がないまま、欧米に比べ遅れて出発した日本の造船業であったが、政府の手厚い保護の下に、日清(にっしん)、日露、第一次、第二次世界大戦を通じ、飛躍的な発展を遂げた。技術ならびに量的にも、第二次世界大戦の敗戦前、日本の造船業はすでに世界の一流国にまで達していた。軍艦陸奥(むつ)、長門(ながと)あるいは大和(やまと)、武蔵(むさし)の例をみるまでもなく、日本の造船技術は、日本の産業のなかでは珍しく戦前に高い水準に達していた。

 第二次世界大戦後も、「計画造船」とよばれる政策的支援によって生産を再開し、今回は、軍艦はないものの、石油タンカーを軸に、世界一の造船国となった。発展の契機をなしたのは、1956年のスエズ戦争によるスエズ運河の閉鎖である。運河閉鎖によって世界の海運界はタンカーの大型化ブームにみまわれたが、その大型タンカー・ブームをほとんど日本の造船業が吸収し、世界造船量の過半を制するに至った。しかし、1973年末の石油ショックは、世界のタンカー船腹の過剰をもたらし、一転して深刻な造船不況の谷間に陥った。まだ世界一に違いはないが、日本の新造船受注量はピーク時(1973)の3379万総トンから1978年(昭和53)のボトム時には322万総トンと10分の1に激減し、またピーク時以降10年余の間、平均して3分の1の受注量に満たず、造船業からの撤退が相次いでいる。

[三輪芳郎]

日本の造船業の歴史的特質

近代造船業は、技術における二つの革命的進歩によってもたらされた。一つは、推進力機構における帆から蒸気機関への移行であり、これは1807年にアメリカで建造されたクラーモント号(機関はイギリス製)が最初である。他の一つは、船体の木製から鉄製への移行であり、これは1821年のイギルスのアーロン・マンビー号であった。この二大進歩は、その後、後者は鉄製から鋼船へ(1873年のルドウダブル号)、前者は1890年代から20世紀初頭にかけて蒸気タービンとディーゼル機関に移行し始め、これらの進歩に伴って、船は高速化し大型化した。

 これに対し、日本では、最初の蒸気船瓊浦形(たまうらがた)が1857年(安政4)に、鉄船新潟丸は、前述のように1871年(明治4)に外国の設計により建造されたが、ともに欧米に比べ約半世紀の遅れであった。ところが、鋼船筑後丸は輸入軟鋼材によるとはいえ1890年で、わずか17年の遅れ、蒸気タービン船は1908年(明治41)に天洋丸が建造され、これは欧米とほとんど時間的差異がみられない。

 つまり、近代造船業確立の基礎となった蒸気機関と鉄船ではともに半世紀の遅れであったものが、その高速化・大型化のための道を開いた鋼船と、蒸気タービンやディーゼル機関では、さほど大きな遅れではなかった。このことは、その後の日本の造船業の発達にとって好運であったといえよう。もちろん、欧米が半世紀から1世紀もかけて近代造船業の基礎技術を蓄積したあとに、鋼船やタービン、ディーゼルに取り組んだのに対し、日本は、20年ないし50年という半分の短時間に、基礎的蓄積、つまり関連機械工業技術や鉄鋼技術さらには資金的な蓄積なしに取り組まねばならなかった。この点で、その後の日本の造船業の発達の特殊な形態を生む要因があったといえよう。

 すなわち日本では、幕末期に国防上の必要から、造船所の建設が幕府や雄藩によって進められ、それは製鉄、造機、造船の総合工場の性格をもたざるをえず、技術は全面的に外国に依存せざるをえなかった。明治維新によって官業に没収されたこれら造船所も、軍工廠(こうしょう)を主体とする艦艇建造が中心で、民間造船所の発展は1887年前後の官営造船所払下げと、日清戦争による「造船奨励法」(1896)などの育成政策によってであった。政府は、1876年に、かつて水戸藩によってつくられた石川島造船所と横浜製鉄所を平野富二(とみじ)に(後の石川島造船所)、1884年に長崎造船所を岩崎弥太郎(やたろう)に(後の三菱(みつびし)長崎造船所)、1886年に兵庫造船所を川崎正蔵(しょうぞう)に(後の川崎造船所)貸し下げ、ここに民間造船所が基礎を築くに至った。

 その後、日清、日露、第一次世界大戦を通じて、政府の懸命な保護の下で日本の造船業は飛躍的発展を遂げ、第一次世界大戦後には船腹量300万総トンに達し、世界第4位の海運国に、さらに1926年(昭和1)には400万総トンを超え第3位。1941年には600万総トンに達した。第二次世界大戦中は、戦時標準船の大量建造が行われ、1944年には年間169万総トンが竣工(しゅんこう)し、戦前最高の造船高を示した。

 しかし、第二次世界大戦で、戦前600万総トンを超えた商船隊も、戦後残ったものは150万総トン余、しかも優秀船はほとんど失われ、残ったものの3分の2は戦時標準船で、船腹量は壊滅的打撃を受けた。ただし、造船所の戦災による被害はわりあいに軽かった。

[三輪芳郎]

戦後の世界の造船業

世界の主要造船国の進水高の推移をみると、1950年、1955年当時はイギリスが世界一であったが、1957年には早くも日本は243万総トンに達し、イギリスを抜いて世界一の建造量となった。以後、世界各国が低迷するなかで日本のみが爆発的高成長を遂げ、1965年以降、全世界造船高のほぼなかばを独占する地位についている。

 先に述べたスエズ運河閉鎖によるタンカー大型化の潮流は、日本の造船所がことごとく記録を更新し、10万トン、30万トン、50万トンタンカーへと大型化のほとんどを日本が獲得した。

 1973年当時の世界の新造船建造状況をみると、国内船が36%、輸出船が64%、また日本のみでみても国内船30%、輸出船70%で、船舶が国際商品化していることがわかる。

 世界の船種別竣工量の構成比をみると、ピーク時の1975年では総竣工量3420万総トンのうち、石油タンカーが2273万総トン(66%)と圧倒的であった。ところが、ボトムの1980年には総竣工量が1310万総トンと3分の1に激減したが、そのうちとくに石油タンカーは394万総トンと2割弱に陥り、全竣工量に占める比重も30%にすぎなくなった。世界の船種別船腹量の構成比をみると、1955年当時は石油タンカー26%、「その他」の貨物船74%であったが、1976年には石油タンカー45%、オア・バルク(鉱石、石炭、穀物などのばら積船、あるいは、ばら荷と石油とどちらも積める油・鉱石兼用船)が25%、「その他」の貨物船30%と、構成比は逆転している。

[三輪芳郎]

戦後の日本の造船業

1973年まで

1973年末の日本の造船業の工場数、従業員数は、鋼造船工場593、従業員17万人強、ほかに社外工8万人余、計25万4000人、また木造船工場328、従業員計約3500人であった。

 1964年から1973年までの10年間に、鋼造船工場の従業員数は約2割増にすぎなかったが、この間進水量は約4倍に増加しており、労働生産性の向上は目覚ましい。

 これは、建造船舶の大型化、高能率の大型造船所の建設、設備の合理化など、自動化、省力化を徹底して行った結果である。たとえば、リベット方式を溶接構造に変革したことに始まり、船体をいくつかのブロックに分けて組み立て、これをドックでつなぎ合わせるブロック建造方式、さらにブロック組立ての段階から艤装(ぎそう)工事を行う早期艤装の実施等々である。かつては、各種のパイプや種々の艤装は進水後、海面上の露天作業で行っていたため時間がかかったが、ブロックの段階で行えば、天候に左右されることなく室内作業で行えるので効率的である。ただし、ブロックで配管その他の艤装を行い、あとでブロックとブロックをつなぎ合わせるためには、各種パイプ等の末端に至るまでの位置決めや寸法精度誤差の測定が厳密に行われる技術があって初めて可能なことである。

 また設計の段階でいえば、元来、船舶は洋上での安全性が絶対命題であって、従来の設計を変更するのは危険を伴いがちであるので、きわめて保守的であるのが通例である。しかし日本では、たとえば、「ずんぐり」船を開発した。つまり、タンカーは幅広の船型にすればするほど積載可能な内容積に比べ外側の船殻の比は節約になる。しかし、ずんぐりにすればそれだけ水の抵抗が大きく、スピードは落ちる。そこで日本は球状船首を考案してこれを打開し、従来の常識を破って大型船の設計に成功したのである。また、造船所といえばクレーンが林立しているのが常識であった。ところが新設の石川島播磨(はりま)重工業(現、IHI)横浜造船所では、徹底してクレーンによる上下移動を排し(運搬エネルギーがロスされるから)、水平移動に徹し、極端にいえば、外部からの鋼材搬入時の大型クレーンのみ残し他はいっさいクレーンを廃止するという画期的なものであった。また、船舶は一品生産の注文生産方式による製品であるという常識を打ち破って、コンベヤー・システムを導入し、流れ生産を行った。もちろん自動車工場にみるコンベヤー方式と異なり、大型鋼板がゆっくりゆっくり移動する上に作業員が乗って作業する。しかも溶接方式も、従来は大型鋼板の一面を溶接し、クレーンで裏返して反対面から溶接していたものを、裏返さずに一度に片側から両面溶接を行う技術を開発した。自動化、省力化、設計変更、工期の短縮など、数え上げれば限りがない。また大型ドックは、1973年までについに100万重量トンまで建造できるものを完成させ、常時大型タンカー1隻分と次のタンカーの3分の1(工期の長くかかる部分)を同時に進行させるなど、西欧諸国の旧態依然たる造船所とはまったく様相を異にし、工期も半分ないし3分の1に短縮し、世界のトップに躍り出たのであった。1973年の世界の造船所別進水実績のベストテンをみると日本が圧倒的である。

[三輪芳郎]

石油ショック以後

1973年の石油ショック以後、様相は一変した。船舶の発注は、発注者が先行きのインフレ、船価の値上りを見越して、きわめて投機的色彩が濃く、石油ショック前までは過大な発注であった。ノルウェーのファンリー・アンド・イーガース社の調査によれば、石油ショック直前のタンカー発注高は1億9800万重量トンで、これは稼動中のタンカー船腹量の88%にもあたる量であった。当然、石油ショック後の世界海上荷動き量の停滞、船腹過剰から発注のキャンセルが相次ぎ、進水量は激減した。日本の造船業の従業員数は1985年には1973年に比べ半減し、倒産も相次いだ。主要造船会社10社の部門別売上高の変化をみれば、1974年には造船部門45%、その他部門(鉄骨、機械等の兼業部門)55%であったものが、1982年に20%対80%と、造船部門からの脱出が明らかである。

 政府は1978年現有設備能力の35%を削減し、また独占禁止法による不況カルテルで操業規制を行うなどして不況対策をとっているが、事態はより深刻化している。1985年8月には、三光(さんこう)汽船が倒産した。三光汽船は造船不況のなかにあってひとり強気の賭(か)けを行い、1979年には2520隻を運行(うち1900隻は用船)する世界最大の運行会社に急成長したが、累積赤字1683億円で倒産した。

 加えて、韓国、台湾、ブラジル、スペインなどの最近の進出、とくに韓国の1984年進水量は252万総トンにも達し、日本の進水量の27%に迫り、AWES(西欧13か国)合計の276万総トンとほぼ肩を並べるに至っている。

 世界の船腹過剰はまだ当分は解消されないなかで、新造船、とくに低価格のタンカー等でのこれら新興諸国の進出をみて、世界造船地図は大きな変動期を迎えている。

[三輪芳郎]

『挟間源三・本村敏夫編『現代日本産業論(新版)』(1979・法律文化社)』

[参照項目] | 造船 |
東京石川島造船所
京橋区佃島(現在の東京都中央区佃)にあった。『東京石川島造船所製品図集』(1903年〈明治36〉)国立国会図書館所蔵">

東京石川島造船所

川崎造船所(大正時代)
兵庫県神戸市東川崎町(現在の神戸市中央区東川崎町)。『日本名勝旧蹟産業写真集 近畿地方之部』(1918年〈大正7〉)国立国会図書館所蔵">

川崎造船所(大正時代)


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Sozen-sama

>>:  Shipbuilding Scandal

Recommend

Limestone - limestone

A type of sedimentary rock whose main component i...

Jean Meslier

French priest and thinker. Born in Mazerny, a sma...

Arahae

The word hae (southern wind) is a dialect used mai...

Whale belt - Whale belt

〘Noun〙 (Originally from the fact that one side is ...

ESS - ESS

...In this view, the traits of living organisms a...

Universal Suffrage Movement - Sticky Movement

A movement demanding universal suffrage. Movements...

Indian cuisine - Indo-ryori

The cuisine of the vast Indian subcontinent, whic...

Ammonia soda process - Ammonia soda process

Also known as the Solvay process. A method for pr...

Asymmetric carbon atom

When all of the atoms or groups of atoms to which...

Groot, H.de (English spelling) GrootHde

...Dutch jurist. His Dutch name was Huig de Groot...

Mutsu

[1] = Michinoku (Mutsu) [2] One of the eight provi...

Gennagunkenshi (English: Yüan-ho-chünhsien-chih)

A geographical book from the Tang Dynasty in China...

Balde, T.

…In these advanced countries, national unificatio...

State - Kokka (English spelling) state

Generally speaking, it refers to a political commu...

Aluminothermy method - Aluminothermy method

⇒Thermite process Source: About Shogakukan Digital...