A general term for warships that can operate submerged below the surface of the water. Smaller ones are called submarines or submarines. Their greatest feature is their stealth, and since it is difficult to detect and effectively attack a submerged ship, they can operate on the surface of the seas under enemy control. Originally intended for surprise torpedo attacks on warships, their most effective use in both World War I and World War II was commerce raiding. Today, with improved underwater performance and the equipment of various missiles, they have become even more effective in attacking ships and important land locations, and nuclear submarines in particular, along with aircraft carriers, are the most important vessels in the navy. [Yasuo Abe] HistoryThe idea of submarines has been around for a long time, but the first submarine to be used in combat was the Turtle, which attempted to attack a British ship during the American Revolutionary War in 1776 and failed. Then, during the American Civil War, the Confederate Army used various submarines, one of which, the Hunley, sank a Union warship with a spar torpedo and then sank itself, becoming the first submarine (boat) to sink an enemy ship. At that time, the boats were still human-powered. From the 1880s to the early 20th century, the development of submarines (boats) was promoted by technological advances such as the adoption of torpedoes as an offensive weapon, the invention of a battery/electric motor propulsion system that allowed underwater navigation without the need for air, the development of internal combustion engines and hull steel, and the practical application of periscopes to view the sea while submerged. After the Nordenfelt, completed in 1885, which was the first torpedo tube equipped boat, and the French Gymnote (completed in 1888), which was the first torpedo tube powered by batteries and electric motors, John P. Holland of the United States built the prototype Holland (submerged displacement 74 tons), the first practical submarine (boat), equipped with a gasoline engine, storage batteries, and torpedo tubes in a single-hulled hull, in 1898. It was a success and was purchased by the US Navy in 1900. Improved versions were subsequently built, and boats of the same type were widely adopted in various countries, including Japan, the UK, and Russia. Other people who contributed to the development of early submarines included the American Lake, who invented the submarine rudder, the French naval architect Laubeuf, who invented the double-hulled hull, and the Italian naval engineer Laurenti, who built a different type of double-hulled boat. Early ships had poor surface speed and seaworthiness, and poor submergence capabilities, so they were mainly used for harbor defense and raiding anchorages, but by World War I, the practical application of diesel engines for surface use, the adoption of double-hulled hulls, and the enlargement of ship sizes had improved cruising range and seaworthiness, leading to the development of ships that mainly advanced to the operational surface area and, upon encountering an enemy, submerged to launch torpedo attacks. These were called submersible ships, and this type was the main type developed until the end of World War II. In contrast, ships that operated almost entirely submerged are called submarines in the strict sense. In September 1914, just after the start of World War I, the German submarine (U-boat) U-9 sank three British armored cruisers in succession, demonstrating the power of submarines. German submarines made great strides during the war, with significant improvements in armament, speed, and cruising range, as well as larger ship sizes, making long-distance operations possible. At the time, all countries targeted warships as their targets, but Germany devoted all its efforts to building submarines, and from the middle of the war onwards, it carried out commerce raiding operations targeting transport ships, achieving great results and pioneering new uses for submarines. Submarines up until World War II were all improved versions of German ships, with no fundamental improvements, especially in terms of underwater speed and cruising range. Japan made efforts to improve the performance of its submarines to make up for the inferiority of its capital ships due to the Washington Naval Treaty, and while it built cruiser submarines based on German submarine technology, it also led the world in building a large number of Kaidai-class high-speed surface submarines (surface speed 20-23 knots) for fleet operations by adopting high-power double-acting diesel engines, and just before World War II, it built three types of large high-speed surface submarines called the A, B, and C classes that combined the performance of both types. In World War II, Germany used all of its national power to build a large number of submarines and once again engaged in commerce raiding, inflicting heavy damage on the Allies with the wolf pack tactic of having many ships work together to attack transport convoys at night. Japan, despite having a highly capable fleet of submarines, only suffered heavy losses because it stuck to attacking warships, and failed to achieve the results it had hoped for. On the other hand, the United States used them in both warship attacks and commerce raiding in the war against Japan, achieving remarkable results. With the development of radar, sonar, anti-submarine forward-throwing weapons, escort carriers, aircraft, and anti-submarine tactics by the Allied forces, the operational capabilities of conventional submarines, which had poor underwater range and required frequent recharging on the surface, rapidly declined when German submarines were suppressed in mid-1943. In response to this, Germany adopted a snorkel device (ventilation device) that enabled diesel engines to operate submerged, and began mass-construction of revolutionary high-speed submarines by installing a large number of large-capacity batteries in a hull form improved for underwater movement, increasing their underwater speed to 12.5 to 16 knots and their underwater range. Japan also began building similar ships at the same time, but neither of them were able to be put into combat use by the end of the war. Submarines after World War II were high-speed underwater submarines that inherited and developed German technology, and their technical improvements and development were mainly carried out in the United States. The hull shape changed from the wartime emphasis on surface navigation to a streamlined type to reduce underwater resistance, but the teardrop hull shape attempted on the American experimental submarine Albacore completed in 1953 brought about a significant improvement in underwater performance and became widely adopted. In 1954, the first nuclear submarine, the Nautilus, was completed in the United States, and submarines gained the ability to travel at high speeds underwater for long periods of time. The teardrop hull shape was then adopted for nuclear submarines to further improve underwater maneuverability, and thus the true-submarine was realized. [Yasuo Abe] Current SubmarinesIn response to the development of various missiles, homing torpedoes, sonar, and other technologies, submarines have evolved since the late 1950s into (1) ballistic missile submarines, (2) cruise missile submarines, and (3) attack submarines, and have continued to do so to the present day. (1) is equipped with a nuclear-tipped ballistic missile and is launched from the sea. It is considered an important pillar of the strategic nuclear weapons system and has been built by six countries: the United States, the Soviet Union (now Russia), the United Kingdom, France, China, and India. All but a few early vessels are nuclear submarines, the first of which was the George Washington Class (submerged displacement 6,709 tons, 16 Polaris missiles) completed in the United States in 1959. Since then, both the missiles and the vessels have developed, and currently the United States and Russia have vessels with a submerged displacement of 18,000 to 27,000 tons carrying 20 to 24 missiles with ranges of 8,300 to 12,000 kilometers. The United Kingdom, France, and China also possess a very small number of vessels, and India is building one short-range vessel. (2) is a type of ship that previously existed only in the Soviet Union. It is equipped with anti-ship cruise missiles and is intended to target American aircraft carrier task forces. All ships except for the early ones are nuclear-powered. Many ships have been built since 1960, but currently the majority of ships are large ships equipped with 24 anti-ship cruise missiles with a range of 550 kilometers. After the end of the Cold War, land attack missions became more important, and the United States converted some of its ballistic missile submarines into ships equipped with many strategic cruise missiles, and recommissioned them between 2006 and 2008. (3) is tasked with attacking submarines and surface ships, and consists of nuclear submarines and conventionally powered submarines equipped with diesel engines and batteries. Ships built since the late 1970s have significantly improved their detection and identification capabilities and quietness. Both the United States and Russia are equipping their new nuclear attack submarines with strategic cruise missiles, and recent attack submarines are trending toward having the functions of cruise missile submarines as well. Conventionally powered submarines are inferior to nuclear submarines in terms of underwater cruising range and maneuverability, but they are inexpensive to build and maintain, and have the advantage of being quiet, giving them high sonar detection capabilities and making them difficult for enemies to detect. Depending on how they are used, they can be effective, so they are widely used by many countries. Japan's Maritime Self-Defense Force has 16 submarines, and the latest "Soryu" class (submerged displacement 4,200 tons, completed in 2009) is said to be the largest and best-in-class of its kind among all countries. With the end of the Cold War due to the collapse of the Soviet Union, emphasis shifted from building submarines to deal with the US-Soviet naval rivalry in the open seas to anti-submarine warfare in local wars and low-level conflicts. Small and medium-sized countries and developing countries that did not previously have submarines are rapidly purchasing and equipping conventionally powered submarines from Germany, France, Norway, the Netherlands, Spain, Sweden, Russia, etc. (the submarine threat is spreading), and the possibility of submarines being used in the above-mentioned wars and conflicts is increasing. Recently, the United States has begun to build nuclear-powered submarines that take into account operational functions in shallow waters and coastal areas. [Yasuo Abe] Principle and characteristics of hull structureSubmarines have the unique ability to surface, submerge, and move in three dimensions under water under great pressure. There are three types of submarines: double-hulled, with a pressure-resistant hull (inner hull) that can withstand the water pressure of the maximum submerged depth and a non-pressure-resistant outer shell (outer hull) with ballast tanks between them for filling and draining water; single-hulled, with a single-layered pressure section and ballast tanks inside or on the front and rear; and semi-double-hulled, which is an intermediate type between the two and has non-pressure-resistant shells partially outside the pressure section and ballast tanks between them. The single-hulled type with ballast tanks at the front and rear outside the pressure section is used for small conventional submarines, the double-hulled type for medium and large submarines, and the improved semi-double-hulled type for nuclear submarines. Surface and submerge are performed by adjusting buoyancy by filling and discharging water into the ballast tanks, and by using the diving rudders and side rudders. When submerging, first open the water inlet valves at the bottom of the ballast tanks so that the top of the hull is almost submerged in the sea, then open the vent valves at the top of the tanks to fill the tanks with seawater, eliminating the hull's reserve buoyancy and submerging to achieve balance. When rapidly submerging, fill the negative buoyancy tanks with water to make the buoyancy negative, and use the diving and side rudders to submerge with the bow lowered. When surfacing, use the diving and side rudders to approach the sea surface with the head raised, open the water inlet valves with the vent valves closed, drain seawater from the tanks with high-pressure air to increase buoyancy, and after surfacing, open the vent valves to release the air from the top of the tanks. In order to perform three-dimensional movement underwater, in addition to the vertical rudders for turning, the ship has two sets of horizontal rudders for maneuvering up and down. The one at the bow is called the submarine rudders, and the one at the stern is called the cross rudders, but some teardrop-shaped ships have submarine rudders on both sides of the bridge structure. When submerging, both the submarine and cross rudders are depressed to keep the hull almost horizontal and dive slowly, or the submarine rudders are depressed and the cross rudders are elevated to increase speed and dive quickly. In recent years, ships have been built that use X-rudder, which integrates the cross rudders and vertical rudders at the stern, to improve underwater maneuverability. Pressure hulls are generally cylindrical or conical in shape to ensure strength. The maximum safe diving depth has gradually increased with the advancement of structural strength theory and improvements in materials, from 40 to 60 meters in World War I to 80 to 120 meters in World War II. After the war, with the development of tempered high-tensile steel and welding technology, it went from 200 to 300 meters around 1960 to about 500 meters today, but the latest American ship, the Virginia Class (submerged displacement 7,800 tons, commissioned in 2004), is 600 meters. The Soviet Union (now Russia) completed the Alfa Class (submerged displacement 3,600 tons) in 1970, which used titanium alloys to enable a diving depth of 700 meters, and the subsequent Sierra Class (submerged displacement 10,100 tons, completed in 1984) was 750 meters. [Yasuo Abe] Power and PerformanceEarly submarines built at the end of the 19th century used gasoline or oil engines for surface power and batteries for underwater power. In 1904, France completed a ship equipped with a diesel engine, and since then, diesel engines have been used for the surface engines of submarines. Due to the development of diesel engines, the surface cruising performance of submarines (submersible ships) improved gradually from just before World War I, and by World War II, the ship size had increased to 1,500 to 2,000 tons, achieving a significantly longer cruising range compared to surface ships, and the surface speed reached 16 to 20 knots, and in Japan, ships with a speed of over 23 knots appeared. On the other hand, there was almost no improvement in underwater kinetic power and cruising range, and from World War I to World War II, the maximum speed was 8 knots, and the cruising range was poor, about 1 hour at 8 knots and 20 to 40 hours at 3 knots. This, along with the installation of dual-power plants, was seen as a major weakness of submarines, and there was a desire to develop a single engine that could be used both above and below the surface. During World War II, Germany adopted a snorkel device, which allowed air to be taken in while submerged, allowing the diesel engine to operate, and as a more drastic solution, developed the Walter turbine, which could be operated without taking in air from the outside, using hydrogen peroxide as a fuel enhancer, and began mass production of practical ships using this as their main engine, but the war ended before they could be completed. After the war, the Soviet Union built a few vessels, and the UK also built two experimental vessels, but with the emergence of nuclear submarines, no further development took place. Nuclear propulsion engines do not require air and have the advantage of being able to operate for long periods of time on a single refueling, making them ideal for submarines. After World War II, the United States developed them and successfully put them to practical use in the Nautilus, which was commissioned in 1954. This marked a dramatic improvement in the underwater performance of submarines, just over 50 years after the birth of the Holland submarine. Current nuclear submarines are equipped with pressurized water reactors and are capable of operating underwater for long periods of time at a speed of around 35 knots (the Russian Alpha class can reach 42 knots). For conventional submarines, the development of large-capacity batteries and motors, AC generators with converters, high-power supercharged diesel engines, vibration isolation devices, etc. has progressed to increase speed, range, and quietness underwater, resulting in the appearance of extremely quiet vessels with a maximum underwater speed of 20 knots, a range of 12,000 nautical miles at 8 knots when using a snorkel, and a range of about 100 hours underwater at a few knots. Furthermore, in order to increase the underwater operation endurance of conventional submarines, research and development of air independent propulsion (AIP) systems that do not require air outside the vessel to operate has been promoted in various countries since around 1980. AIP is not a replacement for conventional diesel and electric power engines, but a complement to them, and representative methods include Stirling engines, fuel cells, closed cycle diesel engines, and external combustion turbine generators (MESNA). The first vessel to put AIP into practical use was the Swedish Gotland Class, which was commissioned in 1996 and is equipped with a Stirling engine. This was followed by Germany's U31 type (212A type), which was equipped with fuel cells and entered service in 2005. In 2007, South Korea commissioned the AIP-equipped submarine Song Won-il, and Japan also equipped the Soryu-class with AIP. AIP-equipped vessels use diesel engines when sailing on the surface (including snorkeling), the AIP when waiting underwater, and batteries when dashing underwater, and are currently said to have an underwater operational endurance of about one month at five knots. [Yasuo Abe] "The World's Ships Special Issue Vol. 18: Submarines Then and Now" (1985, Kaijinsha)" ▽ "Submarines" by Hori Motomi (1987, Hara Shobo)" ▽ "New Modern Warships" by Hori Motomi and Ebata Kensuke (1987, Hara Shobo)" ▽ "Submarines of World War II" by Richard Humble (1993, Sanseido)" ▽ "Tom Clancy's Dissection of a Nuclear Submarine" by Tom Clancy (1996, Shinchosha)" ▽ "The World's Ships No. 505: Special Feature: Submarines" (1996, Kaijinsha)" ▽ "The World's Ships No. 547: Special Feature: All About Submarines" (1999, Kaijinsha)" ▽ "The World's Submarines Illustrated" by Sakamoto Akira (1999, Green Arrow Publishing)" ▽ Modern Submarines (2001, Gakken) Submarines of the World by David Miller (2002, Gakken) World's Ships Special Issue No. 68: Submarines of the World (2005, Kaijinsha) Shizuo Fukui Collected Works No. 9: The Story of Japanese Submarines (2009, Kojinsha) World's Ships No. 719: Special Feature: Nuclear Submarines (2010, Kaijinsha) Stephen Saunders Jane's Fighting Ships 2010-2011 (2010, Jane's Information Group) [References] | | | |©Hayao Nogami "> The structure of a nuclear ballistic missile submarine (Henry… ©Shogakukan "> History of the Submarine The fourth Soryu-class submarine of the Japan Maritime Self-Defense Force. Standard displacement 2,950 tons, overall length 84 m, overall width 9.1 m, underwater speed 20 knots ©Shogakukan "> Submarine Kenryu Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
水面下を潜航し行動できる軍艦の総称。小型のものは潜水艇または潜航艇という。隠密性を最大の特徴とし、潜航中の艦を捕捉(ほそく)し有効な攻撃を加えることが容易でないので、敵勢力下の海面でも作戦が可能である。元来軍艦の奇襲雷撃を目的としたが、第一次、第二次両世界大戦では通商破壊戦がもっとも有効な用途であった。現在は水中性能の向上と各種ミサイルの装備によりさらに艦船、陸上重要地攻撃に威力を増し、とくに原子力潜水艦は航空母艦とともに海軍艦艇のなかでもっとも重要な艦になっている。 [阿部安雄] 沿革潜水艦の考えは古くからあったが、アメリカ独立戦争時の1776年にイギリス艦攻撃を試みて失敗したタートルTurtleが、実戦に使われた最初のものである。ついで南北戦争で南軍は各種の潜航艇を使用し、その一艇ハンリーHanleyが外装水雷で北軍軍艦を撃沈し、自らも沈没したが、これが初めて敵艦を沈めた潜水艦(艇)となった。当時の艇はまだ人力推進である。1880年代から20世紀初頭にかけて、攻撃兵器に魚雷の採用、空気不必要の水中航行を可能とする電池・電動機推進方式の考案、内燃機関および船体鋼材の発達、潜航中に海上を見る潜望鏡の実用化などの技術進歩により、潜水艦(艇)の開発が促進された。魚雷発射管を最初に装備した1885年完成のノルデンフェルトNordenfelt艇、初めて電池と電動機を動力源としたフランスのジムノトGymnote(1888年完成)などを経て、1898年アメリカのジョン・P・ホランドJohn P. Hollandが、単殻式船体にガソリン機関、蓄電池、発射管を装備した初の実用潜水艦(艇)ホランド(水中排水量74トン)を試作して成功を収め、1900年にアメリカ海軍に購入された。引き続きその改良型が建造され、同型艇が日本、イギリス、ロシアをはじめ広く各国で採用された。そのほか潜舵(せんだ)を考案したアメリカ人レイクLake、複殻式船体の考案者であるフランス造船官ローブーフLaubeuf、別方式の複殻式艇をつくったイタリア海軍技師ローレンチLaurentiなどが、初期の潜水艦開発に力を尽くした。初期の艦は水上速力と航洋性が貧弱で潜航能力も低く、おもに港湾防御や泊地襲撃に使われるにすぎなかったが、第一次世界大戦までに水上用航走ディーゼル機関の実用化、複殻式船体の採用、艦型増大などにより、航続力と航洋性が向上し、主として水上航走で作戦海面に進出し、会敵するや潜航して魚雷攻撃を行う艦が発達した。これを可潜艦submersibleと称し、第二次世界大戦末までこの型式がおもに発達した。これに対して、ほとんど潜航状態で行動するものを狭義の潜水艦submarineと称する。 第一次世界大戦開始直後の1914年9月、ドイツの潜水艦(Uボート)U-9はイギリスの装甲巡洋艦3隻をたて続けに撃沈し、潜水艦の威力を実証した。この大戦でドイツ潜水艦は飛躍的な発達を遂げ、兵装、速力、航続力などの著しい向上と艦型増大とにより遠洋作戦が可能になった。当時各国とも軍艦を襲撃目標にしていたが、ドイツは潜水艦の建造に全力を傾注し、大戦中期以降は輸送船を目標とした通商破壊戦を実施して大きな効果を収め、潜水艦の新用法を開拓した。 第二次世界大戦までの潜水艦は、いずれもドイツ艦の改良型で、根本的な改良点はなく、とくに水中の速力と航続力はほとんど向上がなかった。日本はワシントン海軍軍縮条約による主力艦の劣勢を補うため潜水艦の性能向上に努力を傾け、ドイツ潜水艦技術を基とした巡洋潜水艦を建造する一方、高出力複動ディーゼル機関の採用などにより海大(かいだい)型と称する艦隊作戦用水上高速潜水艦(水上速力20~23ノット)を多数建造して世界をリードし、第二次世界大戦直前には両型式の性能を兼ね備えた甲・乙・丙型とよばれる3種の大型水上高速潜水艦を建造するに至った。 第二次世界大戦でドイツは国家の総力をあげて潜水艦の大規模建造を行い、ふたたび通商破壊戦を実施し、多数の艦が共同して輸送船団を夜間攻撃する狼群(ろうぐん)戦法により連合国に多大の被害を与えた。日本は高性能の潜水艦群を擁しながら、軍艦攻撃に固執したため損害のみ大きく、期待した成果があげられず、他方アメリカは対日戦で軍艦攻撃と通商破壊戦の両方に使用して著しい成果を収めた。連合国軍におけるレーダー、ソナー、対潜前投兵器、護衛空母、航空機、対潜水艦戦術などの発達により、1943年中ごろにドイツ潜水艦が制圧されるに及んで、水中航続力に乏しく頻繁な浮上充電を必要とする在来型可潜艦の作戦能力は急激に低下した。これに対しドイツは、ディーゼル機関の潜航運転を可能とするシュノーケル装置(換気装置)を採用するとともに、水中運動に適するよう改良した船型に大容量電池を多数搭載し、水中速力を12.5~16ノットに向上させ、水中航続力も増大した画期的な水中高速潜水艦の大量建造に着手し、日本も時期を同じくして同種艦の建造に踏み切ったが、いずれも終戦までに戦力化できなかった。 第二次世界大戦後の潜水艦は、ドイツの技術を継承、発展させた水中高速型となり、その技術的改良および発達はおもにアメリカで行われた。船体形状は、大戦中の水上航走重視型から水中抵抗減少のため整流型になったが、1953年に完成したアメリカの実験潜水艦アルバコアーAlbacoreで試みられた涙滴tear-drop型船型は水中性能の著しい向上をもたらし、広く採用されるようになった。1954年アメリカで最初の原子力潜水艦ノーチラスNautilusが完成し、潜水艦は長期にわたり水中を高速航行しうる能力を獲得した。ついで原子力潜水艦に涙滴型船型を採用してさらに水中運動性能を増進させ、ここに真の潜水艦true-submarineが実現した。 [阿部安雄] 現在の潜水艦各種ミサイル、ホーミング魚雷、ソナーなどの発達に対応し、1950年代後半から潜水艦は(1)弾道ミサイル潜水艦、(2)巡航ミサイル潜水艦、(3)攻撃潜水艦に分かれ発達して現在に至っている。 (1)は核弾頭付き弾道ミサイルを搭載し海中から発射するもので、戦略核兵器体系の重要な柱とされ、アメリカ、ソ連(現在はロシア)、イギリス、フランス、中国、インドの6か国が建造した。一部の初期の艦以外はすべて原子力潜水艦で、1959年アメリカで完成したジョージ・ワシントン級George Washington Class(水中排水量6709トン、ポラリス16発)が最初のものである。以後、ミサイル、艦とも発達し、現在は射程8300~1万2000キロメートル級のミサイルを20~24基搭載する水中排水量1万8000~2万7000トンの艦がアメリカ、ロシアで就役している。イギリス、フランス、中国もごく少数の艦を保有し、インドは短射程の艦1隻を建造中である。 (2)は従来ソ連のみに存在した艦種で、アメリカの空母機動部隊を主目標に、対艦巡航ミサイルを装備した艦で初期のものを除きすべて原子力推進艦である。1960年以来多数の艦が建造されたが、現在は射程550キロメートル級の対艦攻撃用巡航ミサイル24基装備の大型艦が主力になっている。冷戦終結後は対地攻撃任務が重視されるようになり、アメリカは一部の弾道ミサイル潜水艦を多数の戦略巡航ミサイル搭載艦に改造し、2006~2008年に再就役させた。 (3)は潜水艦および水上艦船の攻撃を任務とするもので、原子力潜水艦とディーゼル機関・電池装備の通常動力潜水艦が使用されており、1970年代後期以降の建造艦は、探知・識別能力と静粛性が著しく向上した。アメリカ、ロシアはともに新式の原子力攻撃潜水艦に戦略巡航ミサイルを装備し、最近の攻撃潜水艦は巡航ミサイル潜水艦の機能を兼備する趨勢(すうせい)にある。 通常動力潜水艦は、水中航続力と機動力が原子力潜水艦より劣るが、建造、維持費用が安価であり、優れた静粛性によりソナー探知能力が高くかつ敵に発見されにくい利点を有し、使用法によっては有効な働きが期待しうるため、広く各国で使用されている。日本の海上自衛隊も16隻保有し、最新の「そうりゅう」型(水中排水量4200トン、2009年完成)は、各国の同種艦中最大にして第一級の性能といわれている。 ソ連の崩壊による冷戦終結により、大洋中での米ソ艦角逐に対応した潜水艦建造にかわって、局地戦争、低レベル紛争での対潜水艦戦が重視されるようになった。従来、潜水艦をもたなかった中小国や発展途上国が、ドイツ、フランス、ノルウェー、オランダ、スペイン、スウェーデン、ロシアなどから通常動力潜水艦を購入、装備するケースが急増(潜水艦脅威の拡散)しつつあることにより、前記戦争・紛争で潜水艦が使用される可能性が高まり、アメリカは最近、浅海域、沿岸域での作戦機能を考慮した原子力推進潜水艦を建造するようになった。 [阿部安雄] 原理と船体構造の特徴浮上、潜航を行い、大きな水圧がかかる水中で三次元運動することが、他にみられぬ潜水艦の大きな特質である。船体は、最大潜航深度の水圧に耐える耐圧船殻(内殻)と、外側の非耐圧外板(外殻)の二重構造とし、その間を注排水用のバラストタンク類とした複殻式、耐圧部だけの一重構造で内部または前後の外部にバラストタンク類を設けた単殻式、両者の中間形態で耐圧部の外側に部分的に非耐圧外板を設け、この間をバラストタンク類とした半複殻式の3型式がある。耐圧部の外の前後にバラストタンク類を設けた単殻型は小型通常動力潜水艦に、複殻式は同中・大型艦に、改良された半複殻式は原子力潜水艦に採用されている。 浮上・潜航は、バラストタンクへの注排水による浮力調整と、潜舵(せんだ)および横舵(おうだ)を用いて行われる。潜航のときは、まずバラストタンク底部の注水弁を開き船体上面がほぼ海面につかる状態とし、次にタンク頂部のベント弁を開いてタンク内に海水を満たし、船体の予備浮力をなくして潜航し、つり合いをとる。急速潜航の際は、負浮力タンクにも注水して浮力をマイナスの状態とし、潜・横舵により艦首を下げた姿勢で潜航する。浮上の場合は、潜・横舵により頭上げの姿勢で海面に近づき、ベント弁を閉じたまま注水弁を開き高圧空気でタンクから海水を排水して浮力を増し、浮上後ベント弁を開いてタンク上部の空気を逃がす。水中で三次元運動をするため、旋回用の縦舵のほかに、上下方向の操艦用に2組の水平舵をもつ。艦首部のものを潜舵、艦尾部のものを横舵というが、涙滴型船型の艦では潜舵を艦橋構造物の両側に設けるものもある。潜航時に、潜・横舵とも俯角(ふかく)とし船体をほぼ水平に保ってゆっくり潜水する場合と、潜舵に俯角、横舵に仰角をかけ、速力をあげて急速潜航する場合とがある。近年は水中運動性向上のため、艦尾部の横舵と縦舵を統合したX舵を採用した艦が建造されている。 耐圧船殻は強度を確保するためおおむね円筒形または円錐(えんすい)台形を主体とした形状である。最大安全潜航深度は、構造強度理論の進歩と材料の改良により逐次増加し、第一次世界大戦時は40~60メートル、第二次世界大戦時は80~120メートルになった。戦後、調質高張力鋼と溶接技術の発達により、1960年ごろの200~300メートルを経て、現在は500メートル程度になっているが、アメリカの最新艦バージニア級Virginia Class(水中排水量7800トン、2004年就役)は600メートルである。ソ連(現在はロシア)は、チタン合金を使用して潜航深度700メートルを可能としたアルファ級Alfa Class(水中排水量3600トン)を1970年に完成し、続くシエラ級Sierra Class(水中排水量1万0100トン、1984完成)では750メートルである。 [阿部安雄] 動力と性能19世紀末に建造された初期の潜水艦は、水上動力にガソリン機関または石油機関、水中動力に蓄電池を使用した。1904年フランスがディーゼル機関を搭載した艦を完成し、以後、潜水艦の水上機関にはディーゼル機関が使用された。ディーゼル機関の発達などにより、第一次世界大戦直前から潜水艦(可潜艦)の水上航走性能は逐次増進し、第二次世界大戦までに艦型は1500~2000トンに大型化し、水上艦に比して著しく長大な航続力を達成するとともに、水上速力は16~20ノットとなり、日本では23ノットを超す艦も出現した。他方、水中の運動力と航続力はほとんど発達がみられず、第一次世界大戦中から第二次世界大戦中まで最大速力は8ノットで、航続力は8ノットで約1時間、3ノットで20~40時間程度という貧弱な性能にとどまっていた。これは、2種動力装置の搭載とともに潜水艦の重大な弱点とみなされ、水上・水中で使用可能な単一機関の実用化が望まれた。第二次世界大戦中にドイツはシュノーケル装置を採用して、潜航中でも空気を取り入れディーゼル機関の運転を可能とし、さらに抜本策として過酸化水素を助燃剤として外部から空気を取り入れずに運転しうるワルター・タービンを開発し、これを主機とする実用艦の量産に着手したが、完成前に終戦となった。戦後、ソ連が若干隻を建造し、イギリスも実験艦2隻を試作したが、原子力潜水艦の出現により、それ以上の発展はしなかった。 原子力推進機関は空気を必要とせず、1回の燃料補給で長時間運転可能な利点が潜水艦に最適とされ、第二次世界大戦後アメリカが開発を行い、1954年就役のノーチラスで実用化に成功した。これにより潜水艦は、ホランド艇の誕生から50年余にして水中性能の飛躍的向上を達成するに至った。現在の原子力潜水艦は加圧水型原子炉を装備し、おおむね35ノット程度の速力で長時間水中航走しうる能力を有する(ロシアのアルファ級は42ノット)。 通常動力潜水艦も、水中での速力増大、航続力増進、静粛性向上のために、大容量電池と電動機、転換器付き交流発電機、高出力過給ディーゼル機関、防振装置などの開発が進み、最大水中速力20ノット、シュノーケル使用時の航続距離が8ノットで1万2000海里、水中航続力が数ノットで100時間程度の性能で、きわめて静かな艦が出現した。さらに、通常動力潜水艦の水中行動持続力を増大するため、1980年ごろから各国において運転に艦外の空気を必要としない非大気依存推進(AIP=air independent propulsion)システムの研究開発が進められている。AIPは従来のディーゼル・電気動力機関の代替ではなく、これを補完するもので、スターリング機関、燃料電池、クローズド・サイクル・ディーゼル機関、外燃タービン発電機関(MESNA)などが代表的な方式である。AIPを実用化した最初の艦は、1996年に就役したスウェーデンのゴトランド級Gotland Classで、スターリング機関を搭載している。これに続くものはドイツのU31型(212A型)で、燃料電池を装備、2005年就役した。2007年には韓国でAIP装備潜水艦ソン・ウォンイルが就役、日本でも「そうりゅう」型がAIPを装備した。AIP装備艦は、浮上航走(シュノーケル航走を含む)時はディーゼル機関、水中待機時はAIP、水中でのダッシュ時は蓄電池の電力をそれぞれ使用し、現在のところ水中行動持続力は5ノットで1か月程度と伝えられている。 [阿部安雄] 『『世界の艦船増刊第18集 潜水艦 今と昔』(1985・海人社)』▽『堀元美著『潜水艦』(1987・原書房)』▽『堀元美・江畑謙介著『新・現代の軍艦』(1987・原書房)』▽『リチャード・ハンブル著『第二次大戦の潜水艦』(1993・三省堂)』▽『トム・クランシー著『トム・クランシーの原潜解剖』(1996・新潮社)』▽『『世界の艦船第505号 特集 潜水艦』(1996・海人社)』▽『『世界の艦船第547号 特集 潜水艦のすべて』(1999・海人社)』▽『坂本明著『大図解 世界の潜水艦』(1999・グリーンアロー出版社)』▽『『現代の潜水艦』(2001・学習研究社)』▽『デーヴィド・ミラー著『世界の潜水艦』(2002・学習研究社)』▽『『世界の艦船増刊第68集 世界の潜水艦』(2005・海人社)』▽『『福井静夫著作集9 日本潜水艦物語』(2009・光人社)』▽『『世界の艦船第719号 特集 原子力潜水艦』(2010・海人社)』▽『Stephen SaundersJane's Fighting Ships 2010-2011(2010, Jane's Information Group)』 [参照項目] | | | |©野上隼夫"> 原子力弾道ミサイル潜水艦の構造(ヘンリ… ©Shogakukan"> 潜水艦の歴史 海上自衛隊のそうりゅう型潜水艦の4番艦。基準排水量2950t、全長84m、全幅9.1m、水中速力20ノット©Shogakukan"> 潜水艦けんりゅう 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Diving fishing - Sensui gyogyo
>>: Diving - Sensui (English spelling)
...It is divided into eight provinces, including ...
...Even during their service life, regular inspec...
1916 - American announcer. Also known as Iva Togu...
This is the day that corresponds to the Ox day of...
A perennial herb of the Asteraceae family, distrib...
… [Kuroda Suehisa]. . . *Some of the terminology ...
A deposit formed by sedimentation, including weat...
…(1) Herbal: A blend of various aromatic plants, ...
Assimilation is the process by which organisms br...
...The striped land divisions remain in the Ugo P...
…It is about 30 km long. The upper reaches are di...
[Birth] Douji 13 (1874) [Died] 1916. Shanghai, Chi...
…This committee was formed at the request of Albe...
... On November 6, 1983, a general election was h...
Roman Emperor (reigned 306-337). Son of Constantiu...