Linear mapping

Japanese: 線形写像 - せんけいしゃぞう
Linear mapping

If a map f of a plane onto itself maps lines onto lines and the origin onto the origin, i.e., in a Cartesian coordinate system, then
f(x,y)=(ax+by,cx+dy)
(a, b, c, d are constants)
When f is expressed in the form of a linear map of the plane, it is called a linear map of the plane. For example, the rotation f of the angle θ around the origin is f(xy)
=(cosθ x - sinθ y,
sinθ・x+cosθ・y)
The symmetric translation g about the x-axis is g(x,y)=(x,-y)
These are all linear mappings of the plane. However, translation is not a linear mapping. A linear mapping of the plane is determined by four constants a, b, c, and d, so we can use a 2×2 matrix to get

Similarly, linear mapping can be thought of as mapping a space onto a plane, or a linear mapping that maps a line onto itself. For example, the relationship in which the variable y is proportional to the variable x can be written as y=cx with c as a constant, so this can be considered as a linear mapping that maps a line onto a line. Alternatively, if one space vector A=(a,b,c) is defined, and the mapping f that maps the inner product ax+by+cz=f(X) of X and A to any space vector X=(x,y,z) is a linear mapping that maps a space onto a line.

In this way, a linear map can be regarded as a map that maps one vector space V to another vector space W, and it is easy to see from the definition that it has the following properties:

(1) For all elements X and Y in V,
f(X+Y)=f(X)+f(Y)
(2) For every element X in V and every scalar a,
f(aX)=af(X)
This means that a linear map does not change the sum and scalar multiplication of vectors. When a map f that maps a vector space V to a vector space W satisfies properties (1) and (2), f is often called a linear map from V to W.

[Ryoichi Takagi]

[Reference] | Linear transformations | Vector spaces

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

平面を自分自身に写す写像fが、直線を直線に写し、原点を原点に写すとき、すなわち直交座標系に関して、
  f(x,y)=(ax+by,cx+dy)
   (a,b,c,dは定数)
の形で表されるとき、fを平面の線形写像という。たとえば、原点の周りの角θの回転移動fは
  f(x.y)
   =(cosθ・x-sinθ・y,
   sinθ・x+cosθ・y)
と表され、またx軸に関する対称移動gは
  g(x,y)=(x,-y)
と表されるから、いずれも平面の線形写像である。しかし、平行移動は線形写像ではない。平面の線形写像は4個の定数a、b、c、dによって定まるので、これを2×2行列を用いて

と表すのが普通である。同様に、空間を平面に写す線形写像、あるいは直線を自分自身に写す線形写像などが考えられる。たとえば、変数yが変数xに比例しているという関係はcを定数としてy=cxと書けるから、これは直線を直線に写す線形写像とみなせる。あるいは、空間ベクトルA=(a,b,c)を一つ定めておき、任意の空間ベクトルX=(x,y,z)にXとAの内積ax+by+cz=f(X)を対応させる写像fは、空間を直線に写す線形写像である。

 このように線形写像は、一つのベクトル空間Vをもう一つのベクトル空間Wに写す写像とみなすことができて、次のような性質をもっていることが、定義からすぐわかる。

(1)Vのすべての元X、Yに対して、
  f(X+Y)=f(X)+f(Y)
(2)Vのすべての元Xとすべてのスカラーaに対して、
  f(aX)=af(X)
これは、線形写像がベクトルの和とスカラー倍を変えないものであることを意味している。なお、ベクトル空間Vをベクトル空間Wに写す写像fが(1)、(2)の性質を満たすとき、fをVからWへの線形写像ということも多い。

[高木亮一]

[参照項目] | 一次変換 | ベクトル空間

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Linear algebra - senkeidaisugaku (English spelling) linear algebra

>>:  Genital warts - Condyloma acuminatum

Recommend

Hydrocephalus - Hydrocephalus

[What kind of disease is it?] The amount of cerebr...

Onagoza

...This seat has a good view of the entire doma a...

Vézelay - Vézelay (English spelling)

A small village in the Yonne department in centra...

Barry, Sir Charles

Born: May 23, 1795, London [Died] May 12, 1860, Lo...

Stories from the fairyland

A Shinto book by Hirata Atsutane. Also known as &q...

English Alphabet List - English Alphabet List

… Throughout the 16th century, English borrowed f...

'Abd Allāh al‐Nadīm

1843‐96 Egyptian journalist and educator. Influenc...

Aomonoichi - Aomonoichi

A wholesale market where vegetables and fruits are...

Katahara family

...They were powerful warriors in Mikawa Province...

Hou Jing Rebellion

In August 548 (the second year of the Taiqing era)...

Elegant writing - Gabun

〘 noun 〙 Elegant writing. Especially the kana writ...

Albani, F.

...This is the first example of Baroque decorativ...

Gyokuou-ro

…He was adopted by Tsukioka Sessai and became a d...

Tong Pass

A county in the eastern end of Shaanxi Province, ...