Linear mapping

Japanese: 線形写像 - せんけいしゃぞう
Linear mapping

If a map f of a plane onto itself maps lines onto lines and the origin onto the origin, i.e., in a Cartesian coordinate system, then
f(x,y)=(ax+by,cx+dy)
(a, b, c, d are constants)
When f is expressed in the form of a linear map of the plane, it is called a linear map of the plane. For example, the rotation f of the angle θ around the origin is f(xy)
=(cosθ x - sinθ y,
sinθ・x+cosθ・y)
The symmetric translation g about the x-axis is g(x,y)=(x,-y)
These are all linear mappings of the plane. However, translation is not a linear mapping. A linear mapping of the plane is determined by four constants a, b, c, and d, so we can use a 2×2 matrix to get

Similarly, linear mapping can be thought of as mapping a space onto a plane, or a linear mapping that maps a line onto itself. For example, the relationship in which the variable y is proportional to the variable x can be written as y=cx with c as a constant, so this can be considered as a linear mapping that maps a line onto a line. Alternatively, if one space vector A=(a,b,c) is defined, and the mapping f that maps the inner product ax+by+cz=f(X) of X and A to any space vector X=(x,y,z) is a linear mapping that maps a space onto a line.

In this way, a linear map can be regarded as a map that maps one vector space V to another vector space W, and it is easy to see from the definition that it has the following properties:

(1) For all elements X and Y in V,
f(X+Y)=f(X)+f(Y)
(2) For every element X in V and every scalar a,
f(aX)=af(X)
This means that a linear map does not change the sum and scalar multiplication of vectors. When a map f that maps a vector space V to a vector space W satisfies properties (1) and (2), f is often called a linear map from V to W.

[Ryoichi Takagi]

[Reference] | Linear transformations | Vector spaces

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

平面を自分自身に写す写像fが、直線を直線に写し、原点を原点に写すとき、すなわち直交座標系に関して、
  f(x,y)=(ax+by,cx+dy)
   (a,b,c,dは定数)
の形で表されるとき、fを平面の線形写像という。たとえば、原点の周りの角θの回転移動fは
  f(x.y)
   =(cosθ・x-sinθ・y,
   sinθ・x+cosθ・y)
と表され、またx軸に関する対称移動gは
  g(x,y)=(x,-y)
と表されるから、いずれも平面の線形写像である。しかし、平行移動は線形写像ではない。平面の線形写像は4個の定数a、b、c、dによって定まるので、これを2×2行列を用いて

と表すのが普通である。同様に、空間を平面に写す線形写像、あるいは直線を自分自身に写す線形写像などが考えられる。たとえば、変数yが変数xに比例しているという関係はcを定数としてy=cxと書けるから、これは直線を直線に写す線形写像とみなせる。あるいは、空間ベクトルA=(a,b,c)を一つ定めておき、任意の空間ベクトルX=(x,y,z)にXとAの内積ax+by+cz=f(X)を対応させる写像fは、空間を直線に写す線形写像である。

 このように線形写像は、一つのベクトル空間Vをもう一つのベクトル空間Wに写す写像とみなすことができて、次のような性質をもっていることが、定義からすぐわかる。

(1)Vのすべての元X、Yに対して、
  f(X+Y)=f(X)+f(Y)
(2)Vのすべての元Xとすべてのスカラーaに対して、
  f(aX)=af(X)
これは、線形写像がベクトルの和とスカラー倍を変えないものであることを意味している。なお、ベクトル空間Vをベクトル空間Wに写す写像fが(1)、(2)の性質を満たすとき、fをVからWへの線形写像ということも多い。

[高木亮一]

[参照項目] | 一次変換 | ベクトル空間

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Linear algebra - senkeidaisugaku (English spelling) linear algebra

>>:  Genital warts - Condyloma acuminatum

Recommend

Kim In-mun (English spelling)

629‐694 A royal general of Silla, Korea. His pen n...

Nobuyuki Aoyama

Year of death: Tempo 14.9.6 (1843.9.29) Year of bi...

Douglas Reef

…The southernmost island in Japan (20°25′N, 136°0...

Bassano, L. (English spelling)

…An Italian High Renaissance painter. His real na...

Nanjo Fumio - Nanjo Bunyu

A priest of the Otani sect of Shinshu Buddhism. H...

Preconsciousness

A mental process that is not conscious at a certai...

Vegan Society

…In modern times, vegetarianism is supported not ...

threatening coloration

...The former are classified as protective colors...

Musk shrew (Japanese musk rat)

A small mammal of the Soricidae family in the Inse...

Paros inscription - Paros inscription

A marble slab chronicle erected on the island of P...

Kimura Mokuro

1774-1857 * A samurai from the late Edo period. B...

Wakan

In the 15th century, in the early days of the Jos...

Kimyochourai - A tribute to the deceased

To take refuge in a Buddha or Bodhisattva. Taking...

Kayapo - Kayapo

...the name given to the tribes who speak the lan...

Hiyoshizu [village] - Hiezu

A village in Saihaku District, western Tottori Pre...