When two solutions with different concentrations are placed in contact with each other across a semipermeable membrane, the solvent will move from the solution with the lower solute concentration to the solution with the higher concentration (think of salt being sprinkled on a slug). This phenomenon is called osmosis. It was previously written as "permeation". In order to prevent this movement of the solvent, extra pressure must be applied to the concentrated solution. In other words, a pressure equivalent to this extra pressure is applied from the dilute solution through the semipermeable membrane. This pressure is called osmotic pressure. Usually, the osmotic pressure of a solution is measured using a pure solvent instead of a dilute solution. The osmotic pressure of a solution varies depending on the concentration and temperature of the solution, but for solutions that are not very concentrated, ΠV = inRT or Π = icRT holds. Here, Π is the osmotic pressure of the solution, V is the volume of the solution, n is the number of moles, c is the molar concentration (= n / V ), i is the van't Hoff coefficient, R is the gas constant, and T is the absolute temperature. For nonelectrolytes, such as alcohol and sucrose, i is equal to 1, but for electrolytes it is greater than 1. This is due to dissociation in the solution, indicating that the number of molecules has increased from the number of moles initially added. Physiological saline is a 0.85% aqueous solution of sodium chloride, which has an osmotic pressure almost equal to that of the body fluids of animals and humans. In other words, it is said to be "isotonic." When red blood cells are placed in pure water, they absorb water and burst due to osmotic pressure, but this is why they do not change in physiological saline. In addition, when a pressure greater than the osmotic pressure is applied to a concentrated solution, the solvent is squeezed out of the semipermeable membrane, a phenomenon known as reverse osmosis, which is beginning to be used in seawater desalination, wastewater treatment, etc. However, there are still considerable difficulties in creating a semipermeable membrane that can withstand high pressure. [Yamazaki Akira] BiologyThe osmotic pressure between two solutions in contact with each other across a semipermeable membrane is equal to the difference in osmotic pressure of each solution with respect to the solvent. Because the plasma membrane (cell membrane) of a cell has the properties of a semipermeable membrane, it is important for living organisms to maintain the osmotic concentration of body fluids within an appropriate range in order to maintain the physiological conditions of the cells in contact with it. However, in living organisms, cell membranes have selective permeability (membrane permeability differs depending on the substance) to potassium ions (K + ) and the like, and also perform active transport (transport of substances against a concentration gradient) of sodium ions (Na + ), calcium ions (Ca 2+ ), sugars, amino acids, etc. As a result, even if the osmotic concentrations of the fluids inside and outside the cell are equal, the movement of water, which is the solvent, is not necessarily in equilibrium. Therefore, if the flow of water into and out of the cell is balanced when a cell is immersed in a certain solution and the volume of the cell does not change, the solution is called an isotonic solution. In contrast, a solution that removes water from the cell and reduces its volume is called a hypertonic solution, and a solution that enters the cell and causes it to swell is called a hypotonic solution. For example, in a sodium chloride solution, which has the same osmotic concentration as seawater, i.e., an isotonic solution, sea urchin eggs hardly change volume. Therefore, this solution is an isotonic solution. However, in a calcium chloride solution, which is also isotonic to seawater, sea urchin eggs absorb water and increase in volume. In other words, the solution becomes hypotonic. In general, animal cells easily deform in response to changes in internal pressure, and the pressure difference between the inside and outside of the cell (turgor pressure) is kept at an extremely low value. Therefore, under conditions where the cell membrane can be assumed to be an ideal semipermeable membrane (passing only solvents and completely blocking solutes), the flow of water into and out of the cell reaches equilibrium at the point where the osmotic concentrations inside and outside the cell are equal. In fact, in sea urchin and lugworm eggs, the value of the volume minus a correction value called the non-aqueous phase (the osmotically inactive cell volume portion) changes inversely proportional to the osmotic concentration of the extracellular fluid, such as diluted seawater. On the other hand, the volume of plant cells is restricted by the cell wall, and the turgor pressure reaches several to several tens of atmospheres. Osmotic pressure also plays an important role in plants, such as maintaining the mechanical strength of the plant body and providing the driving force for growth and dormancy. [Akira Murakami] human bodyThe osmotic pressure of all bodily fluids in the human body is equal and constant, except for the renal medulla. Therefore, when the osmotic pressure changes, water moves inside and outside the cells, or between the bodily fluids, causing water deficiency or excess inside the cells, resulting in the loss of smooth biological functions. Therefore, osmotic pressure is one of the most important conditions for the internal environment of the body. The osmotic pressure of blood is regulated by the amount of water and sodium excreted by the kidneys. For example, when the osmotic pressure of plasma increases, the secretion of antidiuretic hormone from the posterior pituitary gland increases, and water reabsorption in the renal tubules increases. As a result, urine volume decreases, preventing plasma concentration, while thirst is felt and water intake increases. Conversely, when the osmotic pressure of plasma decreases, the secretion of antidiuretic hormone is suppressed and water excretion increases. Most of the osmotic pressure of body fluids is caused by electrolytes, and the pressure is 285 milliosmoles (5,500 millimeters of mercury). Meanwhile, blood contains large molecules such as proteins in addition to electrolytes, and the osmotic pressure caused by such large molecules is called colloid osmotic pressure. Since electrolytes freely pass through the capillary walls, the osmotic pressure caused by them immediately reaches equilibrium inside and outside the blood vessel walls. However, while the colloid osmotic pressure of plasma is only about 20 millimeters of mercury, proteins do not pass through the capillary walls, so plasma becomes hypertonic relative to interstitial fluid, which draws water into the blood vessels. For this reason, conversely, if the plasma becomes low in protein due to nutritional disorders, the colloid osmotic pressure decreases, and water leaves the blood vessels and enters the tissues, causing edema (swelling). [Hidenobu Mashima] [Reference items] | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
濃度の異なる2種の溶液を半透膜を境として接触させると、溶質の濃度の小さいほうから濃厚溶液のほうへと溶媒の移動がおこる(ナメクジに塩をかけたときを考えればよい)。この現象を浸透という。以前は「滲透」と書いた。このような溶媒の移動を阻止するためには、濃厚溶液のほうに余分の圧力を加える必要がある。つまり、半透膜を通して希薄溶液のほうから、この余分の圧力に相当するだけの圧力がかかっていることになる。この圧力が浸透圧である。通常は希薄溶液のかわりに純溶媒を用いて測定したものを「溶液の浸透圧」という。溶液の浸透圧は溶液の濃度、温度によって変化するが、あまり濃厚でない溶液については、ΠV=inRTまたはΠ=icRTが成り立つ。ここでΠは溶液の浸透圧、Vは溶液の体積、nはモル数、cはモル濃度(=n/V)、iはファント・ホッフ係数、Rは気体定数、Tは絶対温度である。非電解質、たとえばアルコールやショ糖などではiは1に等しいが、電解質においては1よりも大きくなる。これは溶液中で解離がおこるためで、分子数が初めに加えたモル数よりも増加していることを示している。生理食塩水は0.85%の塩化ナトリウム水溶液であるが、これは動物や人間の体液とほぼ等しい浸透圧を示す。つまり「等張である」という。赤血球などを純水に投入すると浸透圧のために吸水がおこって破裂するが、生理食塩水の中では変化しないのはこのためである。 また、濃厚溶液のほうに浸透圧よりも大きな圧力をかけると、半透膜から逆に溶媒が絞り出される現象がおこるが、これは逆浸透とよばれ、海水淡水化、廃水処理などに利用が始まっている。しかし、大きな圧力に耐える半透膜をつくるには、まだかなり困難な問題がある。 [山崎 昶] 生物半透膜を挟んで接する2溶液間の浸透圧は、各溶液の溶媒に対する浸透圧の差に等しい。細胞の原形質膜(細胞膜)は半透膜の性質をもつため、生物にとっては、体液の浸透濃度を適切な範囲に保つことが、それと接する細胞の生理的条件を維持するために重要である。しかし、生体内において、細胞膜はカリウムイオン(K+)などに対する選択的透過性(物質によって膜透過性が異なること)をもち、また、ナトリウムイオン(Na+)、カルシウムイオン(Ca2+)および糖やアミノ酸などの能動輸送(濃度勾配(こうばい)に逆らう物質輸送)を行う。その結果、細胞内外の液の浸透濃度が等しくても、かならずしも溶媒である水の移動が平衡状態にあるとは限らない。そこで、ある溶液に細胞を浸したとき、細胞への水の出入りが均衡し、細胞の体積が変化しないならば、その溶液を等張液という。それに対し、細胞から水を奪って細胞の体積を減少させるものを高張液、逆に細胞内に水が入って細胞が膨潤するものを低張液という。たとえば、海水と同じ浸透濃度をもつ塩化ナトリウム溶液、すなわち等浸透液中では、ウニ卵はほとんど体積が変化しない。したがって、この溶液は等張液である。しかし、同じように海水と等浸透液である塩化カルシウム溶液中では、ウニ卵は吸水して体積を増す。すなわち、低張液となる。一般に動物細胞は内圧の変化に応じて容易に変形し、細胞内外の圧差(膨圧)はきわめて低い値に保たれる。したがって、細胞膜が理想的半透膜(溶媒のみを通し、溶質を完全に通さない)であると仮定できる条件下では、細胞への水の出入りは細胞内外の浸透濃度が一致した点で平衡に達する。実際に、ウニやゴカイの卵では、非水相(浸透的に不活性な細胞体積部分)とよばれる補正値を減じた体積の価は、ある程度薄めた海水などの細胞外液の浸透濃度に反比例して変化する。 一方、植物細胞は細胞壁によって体積が制限され、膨圧は数気圧から数十気圧にまで達する。浸透圧は、植物体の力学的強度を保ったり、成長運動や就眠運動の原動力を提供するなど、植物においても重要な役割を果たしている。 [村上 彰] 人体人体内の体液の浸透圧は腎髄質(じんずいしつ)を除いてすべて等しく、かつ一定に保たれている。このため、浸透圧が変化すると、細胞内外、あるいは各体液間に水の移動がおこり、細胞内部の水欠乏や水過剰を生じ、円滑な生体機能が失われてしまう。したがって浸透圧は生体内部環境としてもっとも重要な条件の一つといえる。血液の浸透圧は腎臓から排泄(はいせつ)される水およびナトリウムの量によって調節されている。たとえば血漿(けっしょう)の浸透圧が上昇すると、下垂体後葉からの抗利尿ホルモン分泌が増加して、腎尿細管における水の再吸収が増すこととなる。その結果、尿量が減少して血漿の濃縮を防ぐ一方、渇きを感じて水分の摂取が増加する。逆に血漿の浸透圧が低下した場合は、抗利尿ホルモン分泌が抑制されて水分の排泄が増加する。 体液の浸透圧の大部分は電解質によって生じるもので、その圧力は285ミリ浸透圧モル(5500ミリメートル水銀柱)である。一方、血液の中には電解質のほかにタンパク質などの大型分子も含まれており、このような大型分子による浸透圧を膠質(こうしつ)浸透圧という。電解質は毛細血管壁を自由に透過するため、それによる浸透圧は血管壁の内外でただちに平衡に達する。ところが血漿の膠質浸透圧は約20ミリメートル水銀柱にすぎないが、タンパク質は毛細血管壁を透過しないため、間質液に対して血漿は高張となり、水を血管内に吸引する力となる。このため、逆に栄養障害などによって低タンパク血漿になると、膠質浸透圧が減少するため、水分が血管から組織へ出て浮腫(ふしゅ)(むくみ)をきたすこととなる。 [真島英信] [参照項目] | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Osmoregulation - Osmoregulation
>>: Vibration - Shindo (English spelling) oscillation
...Any group that shares a common ancestor for ma...
…the fourth Prime Minister of Southern Rhodesia (...
[raw]? [Died] 17th year of the Suizei Era (1644) A...
...Pupa obtecta refers to the pupae of Lepidopter...
...Daumier, who worked in a highly original style...
…There are abrasive cloths, abrasive paper, water...
…reigned 555-539 B.C.; more precisely, Nabū-naid....
...The culture was named after the tombs first di...
…A mosque is not necessarily limited to a buildin...
[1] 〘 noun 〙① Fields and farmland that have been d...
...The Japanese Cherry Collection (1973) by Ooi J...
...The lyrics are based on the Chinese style, wit...
A Burmese kingdom established by the Mon people fr...
In 1957, an oil field was discovered in the vicini...
The dried stalks (culms) and leaves of grain crops...