Vibration - Shindo (English spelling) oscillation

Japanese: 振動 - しんどう(英語表記)oscillation
Vibration - Shindo (English spelling) oscillation

A phenomenon in which position or quantity changes repeatedly over a certain period of time, such as the movement of a pendulum with a weight hanging from a string swinging back and forth, or the movement of a weight attached to the bottom end of a coiled spring moving up and down.

[Yoshiro Kainuma]

Simple harmonic motion

1When a mass point of mass m moving on a straight line is pulled to the origin by a restoring force F ( x ) = -kx ( k > 0) proportional to the displacement x from the origin on that line, the displacement x ( t ) of this mass point at time t is x ( t ) = a sin (ω0t + δ), and the mass point moves in simple harmonic motion ( Figure A ). Here, a is the amplitude, ω0 of the phase angle ( ω0t + δ) is the angular frequency, and ω0 = 2πν0 = 2π/ T . ν0 is the frequency and T is the period. In a field of such a restoring force, the mass point has a potential energy of (1/2) kx2 .

[Yoshiro Kainuma]

Electrical vibration

The electrical oscillations that occur in an LC circuit, which connects both ends of a capacitor (electric storage device) C and a solenoid L, are a phenomenon similar to simple harmonic motion in mechanics. The self-induction coefficient L of the solenoid corresponds to the mass m of the mass point, the inverse of the capacitance C of the capacitor corresponds to the coefficient of restoring force k , the charges on both plates of the capacitor, plus Q and minus Q , correspond to the displacement x of the mass point, and the current I corresponds to the velocity v of the mass point ( Figure B ). In addition, the energy of the electric field generated between the two plates of the capacitor corresponds to the potential energy of the mass point, and the energy of the magnetic field created by the current flowing through the solenoid corresponds to the kinetic energy of the mass point. Looking at these correspondences, it is easy to understand that it is natural for electrical oscillations to occur in an LC circuit.

[Yoshiro Kainuma]

Damped Oscillation

In reality, a resistive force acts on the mass, and the vibration gradually dampens and finally stops. If the resistive force is proportional to the speed of the mass, the amplitude exponentially decreases with each repetition of the vibration. This type of vibration is called damped vibration. Damped vibration also occurs in electrical vibrations in an LCR circuit with electrical resistance R connected in series to the circuit.

[Yoshiro Kainuma]

Forced Vibration

Vibration when no external force acts on a mass point is called free vibration. In the case where an external force that changes oscillatory over time acts on a mass point that has damped vibration in free vibration and is repeatedly pushed and pulled, after the initial transient vibration has damped, the mass point vibrates at the same frequency as the external force. This is called forced vibration. In forced vibration, the work that the external force does on the mass point per unit time, i.e., the average value of the energy absorbed by the mass point per unit time, is maximized when the frequency of the external force is equal to the natural frequency of the mass point (the frequency of simple harmonic motion when resistance is zero). This is called resonance. Forced electrical vibration can also occur when a series LCR circuit is connected to an AC power source.

[Yoshiro Kainuma]

Coupled vibration, vibration of continuous objects

Two pendulums with equal weight mass and length are attached to a horizontally stretched string and made to oscillate. There is interaction between the two pendulums, and the vibrations of each pendulum are not independent. This type of vibration is generally called coupled vibration. The type in which the two pendulums swing in the same direction and the type in which they swing in opposite directions are independent of each other, and the form of the vibration does not change over time. This type of vibration is called normal vibration or natural vibration, and its frequency is called normal frequency or natural frequency.

The vibration of a continuous object has countless types of normal vibration that satisfy boundary conditions determined by the support method, etc. This normal vibration is also considered to be the vibration of a standing wave that occurs due to the superposition of waves traveling through a continuous object. A continuous object that is vibrating at normal vibration has antinodes (places with maximum amplitude) and nodes, nodal lines, and nodal planes with zero amplitude. Examples of vibration of continuous objects include the lateral vibration of a string with both ends fixed, such as a piano or koto string, the vibration of a membrane with its periphery fixed to a frame, such as a drum or drum skin, the bending vibration of a rod with both ends free, such as a xylophone, the longitudinal vibration of a helical spring, the vibration of a column of air inside a tube with one end closed and the other open, such as an organ, the vibration of a plate by Chladni's method (a method in which the center and one point of the edge of the plate are fixed and the edge of the plate is rubbed with a violin bow), the vibration of air inside the resonance box of a tuning fork, and the vibration of electromagnetic waves in the microwave range inside a cavity resonator. A tuning fork vibrates like a bent rod, with its lower part forming the antinode of vibration. A bell vibrates like a bent and squeezed board, with the nodal lines of vibration appearing on a vertical plane passing through the top of the bell.

Torsional vibration, the vibration of the twisting deformation around the axis of a wire hung with its upper end fixed, is used, for example, to measure the rigidity modulus (torsional elasticity modulus) of metals. It is well known that torsion balances, which use the twist of a wire to measure minute forces, were used in Cavendish's experiments on the law of universal gravitation and Coulomb's law of electricity. Torsional vibration was also used to determine the ratio of the moment of the couple of forces acting on the wire of a torsion balance to the torsion angle.

[Yoshiro Kainuma]

Nonlinear Vibration

Vibrations that cannot be expressed by linear equations for displacement, velocity, acceleration, etc. are called nonlinear vibrations. When the swing angle of a pendulum is large, the approximation that the restoring force is proportional to the swing angle cannot be used. In this case, the period of the pendulum's oscillation increases with the amplitude, and the isochronism of a simple pendulum is lost. The oscillation of a swing is excited by the periodic up and down movement of the center of gravity of the person swinging on the swing. This corresponds to the periodic change in the length of the pendulum string. Parametric excitation is the process of causing oscillation by changing the parameters that determine the oscillation, such as the length of the string, over time. The well-known experiment of Merde, in which the tension of a string is periodically changed to excite the lateral vibration of a string, is also a parametric excitation. When a bow is pressed against a violin string and pulled, the string vibrates. When a line is drawn on a dry blackboard with chalk, a dotted line is sometimes drawn with a creaking sound. These are sustained oscillations caused by causes that are not oscillatory themselves, and are called self-excited oscillations. In either case, it is related to the property of dry friction, where the frictional force decreases as the relative speed between two objects increases. This type of frictional force acts as negative resistance. When normal positive resistance is applied, the mechanical energy of the vibration is lost, but when negative resistance is applied, mechanical energy is supplied from the outside, and the vibration grows and the amplitude increases, for example, as shown in Figure C. When making the tobiganna notches on Onta ware pottery in Hita City, Oita Prefecture, Kyushu, the self-excited vibration that occurs when a thin, elastic metal plate such as a hacksaw blade is pressed against a damp plate rotating on a potter's wheel is used. The shishiodoshi and sozu seen in Japanese gardens are bamboo tubes with one end cut diagonally and the center of the tube supported by a horizontal axis. When the water accumulates, the center of gravity shifts and the bamboo tube tilts, spitting out the water. When it returns to its original position, the bottom of the bamboo tube strikes a stone, making a sharp sound, and this vibration is repeated from then on. This type of vibration is called relaxation oscillation. In a circuit in which a neon discharge tube and a capacitor C are connected in parallel and this is connected to a DC power source through a resistor R, relaxation oscillation occurs, generating a voltage that changes in a sawtooth pattern over time ( Figure D ). While the neon tube stops discharging, the capacitor continues to charge, and when the voltage between the two plates reaches the neon tube's discharge voltage, the neon tube discharges, causing the voltage to drop all at once and the discharge to stop. This process is repeated from then on.

Even in the vibration of a continuous object, if the amplitude is not small enough, nonlinear vibrations often occur, and the various normal vibrations of the object are no longer independent of each other, and interactions occur between these normal vibrations.

[Yoshiro Kainuma]

[Reference] | Resonance | Damped vibration
Simple harmonic motion of a mass point (Figure A)
©Shogakukan ">

Simple harmonic motion of a mass point (Figure A)

Electrical oscillations occurring in an LC circuit (Figure B)
©Shogakukan ">

Electrical oscillations occurring in an LC circuit (Figure B)

Growth of vibration (Figure C)
©Shogakukan ">

Growth of vibration (Figure C)

Relaxation Oscillation (Fig. D)
©Shogakukan ">

Relaxation Oscillation (Fig. D)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

糸でおもりを吊(つ)るした振り子が左右に揺れる運動や、つるまきばねの下端につけたおもりが上下に動く運動のように、位置や量が、ある時間ごとに繰り返し変化する現象。

[飼沼芳郎]

単振動

1直線上を運動する質量mの質点が、その直線上の原点からの変位xに比例する復元力F(x)=-kx(k>0)で原点に引かれる場合には、この質点の時刻tにおける変位x(t)はx(t)=asin(ω0t+δ)で、質点は単振動をする(図A)。ここに、aは振幅、位相角(ω0t+δ)のω0は角振動数で、ω0=2πν0=2π/Tである。ν0は振動数、Tは周期である。このような復元力の場では、質点は位置のエネルギー(1/2)kx2をもつ。

[飼沼芳郎]

電気振動

コンデンサー(蓄電器)CとソレノイドLの両端を接続したLC回路に生ずる電気振動は、力学的な単振動に類似した現象である。ソレノイドの自己誘導係数Lは質点の質量mに、コンデンサーの容量Cの逆数は復元力の係数kに、コンデンサーの両極板の電荷、プラスQ、マイナスQQは質点の変位xに、電流Iは質点の速度vに、それぞれ対応する(図B)。また、コンデンサーの両極板間に生ずる電場のエネルギーは質点の位置エネルギーに、ソレノイドに流れる電流のつくる磁場のエネルギーは質点の運動エネルギーに対応する。このような対応関係をみれば、LC回路に電気振動が生ずるのは当然のことであると理解できるであろう。

[飼沼芳郎]

減衰振動

実際には、質点に抵抗力が働き、振動はしだいに減衰して、ついには静止する。抵抗力が質点の速度に比例する場合には、振動を繰り返すたびに、振幅が指数関数的に減少する。このような振動を減衰振動という。電気振動においても、回路に電気抵抗Rが直列に接続されたLCR回路では、減衰振動がおこる。

[飼沼芳郎]

強制振動

外力が質点に働かぬ場合の振動を自由振動という。自由振動としては減衰振動をする質点に、時間とともに振動的に変化する外力が働き、押したり引いたりを繰り返す場合には、最初の過渡的な振動が減衰したのち、質点は外力と同じ振動数で振動する。これを強制振動という。強制振動において、外力が質点に単位時間にする仕事、すなわち質点が単位時間に吸収するエネルギーの平均値は、外力の振動数が質点の固有振動数(抵抗力ゼロのときの単振動の振動数)に等しいときに最大になる。これを共鳴、または共振という。直列のLCR回路を交流電源に接続した場合にも、電気振動の強制振動がおこる。

[飼沼芳郎]

連成振動、連続物体の振動

水平に張った糸に、おもりの質量も糸の長さも等しい二つの振り子をつけて振動させる。二つの振り子の間には相互作用があり、各振り子の振動は独立ではない。このような種類の振動を一般に連成振動という。この二つの振り子が同一方向に振れるような型、および反対方向に振れる型の振動は互いに独立であり、時間が経過しても振動の様態に変化がない。このような振動を基準振動または固有振動といい、その振動数は基準振動数または固有振動数とよばれる。

 連続物体の振動には、支持方法などによって規定される境界条件を満たすような基準振動の型が無数に現れる。この基準振動は連続物体を伝わる波の重ね合わせによって生ずる定在波の振動ともみなされる。基準振動をしている連続物体には振幅最大の腹(はら)の場所と、振幅ゼロの節(ふし)、節線、節面がみられる。連続物体の振動の例としては、ピアノや琴の弦のような両端を固定した弦の横振動、太鼓やドラムの皮のような周囲を枠に固定した膜の振動、木琴のように両端が自由な棒の曲げ振動、つるまきばねの縦振動、オルガンのように一端が閉じ他端が開いた管内の空気柱の振動、クラードニの方法(板の中央とへりの1点を固定し、板のへりをバイオリンの弓でこする方法)による板の振動、音叉(おんさ)の共鳴箱の中の空気の振動、空洞共振器内におけるマイクロ波領域の電磁波の振動などがある。音叉は曲げた棒のような振動をし、その下部は振動の腹になる。鐘は曲げて絞った板のような振動をし、振動の節線が鐘の頂点を通る鉛直面上に現れる。

 上端を固定して吊るした針金の軸の周りのねじれ変形の振動、すなわちねじれ振動は、たとえば金属の剛性率(ねじれの弾性率)の測定に用いられる。針金のねじれを利用して微小な力を測定するねじれ秤(ばかり)が、キャベンディッシュの万有引力法則の実験や電気のクーロンの法則の実験に用いられたことはよく知られている。ねじれ秤の針金に働く偶力のモーメントとねじれ角の比の決定にもねじれ振動が用いられた。

[飼沼芳郎]

非線形振動

振動の運動方程式が、変位、速度、加速度などの一次式では表すことができぬ場合の振動を非線形振動という。振り子の振れ角が大きい場合には、復元力が振れ角に比例するという近似を使用することができなくなる。この場合には、振り子の振動の周期は振幅とともに増大し、単振り子の等時性が失われる。ぶらんこの振動は、これに乗ってぶらんこをこぐ人の重心が周期的に上下することによって励起される。これは振り子の糸の長さが周期的に変化することに相当する。糸の長さのように振動を決定するパラメーターを時間的に変化させることによって振動をおこすことをパラメーター励振という。弦の横振動には、弦の張力を周期的に変化させて振動を励起するメルデの実験がよく知られているが、これもパラメーター励振である。バイオリンの弦に弓を押し付けて引くと弦が振動する。チョークで乾いた黒板に線を引くとき、きしんで点線が描かれることがある。これらは、それ自身は振動的でない原因によって持続的な振動がおこるものであり、自励振動とよばれる。いずれの場合にも、二つの物体の相対速度が大きくなると摩擦力が減るという乾性摩擦の性質に関係する。このような摩擦力は負抵抗として働く。普通の正の抵抗が働くと、振動の力学的エネルギーは失われるが、負の抵抗が働くと、力学的エネルギーが外部から供給されて、たとえば図Cに示すように振動が成長し振幅が大きくなる。九州の大分県日田(ひた)市の小鹿田(おんだ)焼の陶器にとびがんなの刻み目をつけるときにも、ろくろの上で回転する生乾きの皿などに金鋸(かねのこぎり)の刃のような薄く弾力的な金属板(かんな)を押し付けたときにおこる自励振動が用いられている。日本式庭園などにみられるししおどし、添水(そうず)は、竹筒の一端を斜めに切り、筒の中央を水平な軸で支え、懸樋(かけひ)の水を竹筒に受け、水がたまると重心が移動して竹筒が傾いて水を吐き出し、元の位置に戻るとき、竹筒の底が石を打って鋭い音を発するものであり、以後このような振動が繰り返される。このような振動は緩和振動とよばれる。ネオン放電管とコンデンサーCを並列につなぎ、これを抵抗Rを通して直流電源につないだ回路では、緩和振動がおき、時間とともに鋸歯状に変化する電圧が発生する(図D)。ネオン管の放電が停止している間は、コンデンサーに充電が続けられ、その両極板間の電圧がネオン管の放電電圧に到達すると、ネオン管が放電して、電圧が一挙に低下し、放電が停止する。以後これが繰り返される。

 連続物体の振動においても、その振幅が十分に小さくないときには、しばしば非線形振動がおき、物体のさまざまな基準振動は互いに独立ではなくなり、それらの基準振動の間に相互作用が生ずる。

[飼沼芳郎]

[参照項目] | 共振 | 減衰振動
質点の単振動〔図A〕
©Shogakukan">

質点の単振動〔図A〕

LC回路に生ずる電気振動〔図B〕
©Shogakukan">

LC回路に生ずる電気振動〔図B〕

振動の成長〔図C〕
©Shogakukan">

振動の成長〔図C〕

緩和振動〔図D〕
©Shogakukan">

緩和振動〔図D〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Osmotic pressure

>>:  Degree of kinship - Shinto (English spelling) degree

Recommend

Adan (place name) - Adan

...Until the unification of North and South Yemen...

Invoice - Invoice (English spelling)

A document issued during the distribution of trade...

Hojoe - Hojoe

Based on the Buddhist precepts of not killing or ...

Diospyros

…Some trees in the genus Diospyros in the Ebenace...

Zenmui

A monk translator from India. His Sanskrit name i...

Little gastrin

…It was discovered in 1905 by J.S.Edkins of Engla...

Bowed harp

…Harps are sometimes translated as “harps,” but t...

Nagashige Asano

1588-1632 A daimyo in the early Edo period. Born ...

Bamiyan

A Buddhist ruin located in a valley in the Hindu K...

Hofbräuhaus (English spelling) Hofbrauhaus

…The big change came in the 19th century, when gr...

Touring Lectures - Junkai Park

In 19th century America, experts toured the countr...

Ocean floor permafrost

…Discontinuous permafrost is found up to about 50...

Malacca - Malacca (English spelling)

A port city in the southwest of the Malay Peninsu...

Shiroyama [town] - Shiroyama

A former town in Tsukui District, northern Kanagaw...

Minamoto no Yoshitsuna

A military commander in the late Heian period. Th...