Drawing - Sakuzu

Japanese: 作図 - さくず
Drawing - Sakuzu

Creating a figure that satisfies given conditions. Usually, construction in elementary geometry refers to drawing with a ruler and compass, where a ruler is used to draw a line passing through two points, and a compass is used to draw a circle with a given radius centered on a given point. Then, the intersection of two lines, the intersection of a line and a circle, and the intersection of circles are used to construct the required points, lines, circles, triangles, etc. The theoretical treatment of construction problems can be divided into the following four stages.

[1] Analysis: Once you have obtained what you are looking for, find clues to help you draw it.

[2] Drawing: This section shows how to draw based on the clues obtained.

[3] Proof: Prove that the drawing made by this method meets the requirements.

[4] Examination: Check how many items are available that meet your requirements.

[Minoru Kurita]

Basic Drawing

(1) To construct the midpoint of a line segment AB and a straight line (perpendicular bisector) perpendicular to AB through this point ( Fig. A ). (2) To draw a perpendicular line to a line from a point on the line ( Fig. B ). To draw a perpendicular line to this line from a point outside the line. (3) To construct an angle bisector ( Fig. C ). (4) To construct an angle of a given size with a given half line as one side ( Fig. D ). (5) To draw a line parallel to this line through a point outside the line ( Fig. E ). (6) To construct a triangle with three given lengths as its three sides. (7) To draw a circle passing through three points not on a line ( Fig. F ). (8) To draw a circle with a given line segment as its diameter. (9) To draw a tangent to a circle at a point on its circumference. (10) To draw a tangent to a circle from a point outside the circle ( Fig. G ). (11) To draw an arc with a given line segment as its chord and a given angle ( Fig. H ).

[Minoru Kurita]

Various drawing methods

[1] Method of intersection of loci Point P is divided into given conditions C1 and C2 , and point P is found as the intersection of the loci of points that satisfy each condition. For example, point P, which is equidistant from three points A, B, and C, is found as the intersection of the locus of points that are equidistant from A and B (the perpendicular bisector of line segment AB) and the locus of points that are equidistant from B and C (the perpendicular bisector of line segment BC).

[2] Constructions that use transformations of figures Construction methods that use transformations include the parallel transformation method, the symmetric transformation method, and the rotation transformation method. For example, if three straight lines a, b, and c are given, and a line perpendicular to c is drawn, and for intersections A, B, and C with a, b, and c, to make C the midpoint of the line segment AB, it is sufficient to take the intersection point B between the line symmetric to a and b with respect to c. Construction methods that use the expansion and contraction of figures are called similarity methods. For example, a square is inscribed in an acute triangle by placing one side on the side of the triangle ( Figure I ).

[3] Algebraic Analysis This is a method of drawing that uses the following: (1) Knowing the lengths a and b, create line segments whose lengths are the sum and difference. (2) Knowing the lengths a, b, and c, find the length ab/c. (3) Knowing the lengths a and b,

(4) Find the line segment whose length is x 2 -ax+b 2 =0 (a≧2b), knowing the lengths a and b.
x2 - ax - b2 = 0
To construct a line segment whose length is a positive number x that satisfies ( Figure J ). For example, a regular pentagon or regular 17-gon inscribed in a given circle can be constructed using this method. In general, when p is a prime number and p = 2n + 1 (n is a natural number), a regular p-gon inscribed in a given circle can be constructed using a ruler and compass.

[Minoru Kurita]

Basic drawing (Figure A)
©Shogakukan ">

Basic drawing (Figure A)

Basic drawing (Figure B)
©Shogakukan ">

Basic drawing (Figure B)

Basic drawing (Figure C)
©Shogakukan ">

Basic drawing (Figure C)

Basic drawing (Fig. D)
©Shogakukan ">

Basic drawing (Fig. D)

Basic drawing (Figure E)
©Shogakukan ">

Basic drawing (Figure E)

Basic drawing (Figure F)
©Shogakukan ">

Basic drawing (Figure F)

Basic drawing (Figure G)
©Shogakukan ">

Basic drawing (Figure G)

Basic drawing (Figure H)
©Shogakukan ">

Basic drawing (Figure H)

Drawing using geometric transformation (similarity method) [Fig. I]
©Shogakukan ">

Drawing using geometric transformation (similarity method) [Diagram…

Algebraic Analysis (Figure J)
©Shogakukan ">

Algebraic Analysis (Figure J)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

与えられた条件を満足する図形をつくること。普通、初等幾何における作図というのは、定規(定木)(じょうぎ)とコンパス(円規)による作図のことであって、定規は2点を通る直線を引くことに、コンパスは与えられた点を中心として与えられた半径をもつ円をかくことに用いられる。そして、2直線の交点、直線と円の交点、円と円の交点を使って要求にあう点、直線、円、三角形などを作図する。作図の問題の理論的な扱いは、次の四つの段階に分けられる。

〔1〕解析 求めるものが得られたとして、それを作図する手掛りをみいだす。

〔2〕作図 得られた手掛りを基にして作図する方法を示す。

〔3〕証明 この方法で作図したものが要求にあうものであることを証明する。

〔4〕吟味 要求にあうものがいくつあるかを調べる。

[栗田 稔]

基本作図

(1)線分ABの中点、およびこの点を通ってABに垂直な直線(垂直二等分線)をつくること(図A)。(2)直線の上の点でこれに垂線を引くこと(図B)。直線外の点からこの直線へ垂線を引くこと。(3)角の二等分線をつくること(図C)。(4)与えられた半直線を一つの辺として、与えられた大きさの角をつくること(図D)。(5)直線外の点を通ってこの直線に平行な直線を引くこと(図E)。(6)与えられた三つの長さを3辺の長さにもつ三角形をつくること。(7)1直線上にない3点を通る円をかくこと(図F)。(8)与えられた線分を直径とする円をかくこと。(9)円周上の点でこれに接線を引くこと。(10)円外の点からこの円へ接線を引くこと(図G)。(11)与えられた線分を弦とし、これを与えられた大きさの角に見る円弧をかくこと(図H)。

[栗田 稔]

いろいろな作図法

〔1〕軌跡交会法 点Pについて与えられた条件C1、C2に分け、それぞれの条件を満たす点の軌跡の交点として点Pを求める。たとえば、3点A、B、Cから等距離にある点Pは、A、Bから等距離にある点の軌跡(線分ABの垂直二等分線)とB、Cから等距離にある点の軌跡(線分BCの垂直二等分線)の交点として求められる。

〔2〕図形の変換を利用する作図 移動を利用する作図法には、平行移動法、対称移動法、回転移動法がある。たとえば、3直線a、b、cが与えられているとき、cに垂直な直線を引いてa、b、cとの交点A、B、Cについて、Cが線分ABの中点になるようにするには、cについてaと対称な直線とbとの交点をBにとればよい。また、図形の拡大・縮小を利用する作図法は、相似法といわれる。たとえば、鋭角三角形の中へ、1辺を三角形の辺上に置いて内接する正方形をつくる(図I)。

〔3〕代数解析法 これは次のことを使う作図法である。(1)長さa、bを知って和、差を長さにもつ線分をつくること。(2)長さa、b、cを知って、長さab/cを求めること。(3)長さa、bを知って

を長さとする線分を求めること。(4)長さa、bを知って、二次方程式
  x2-ax+b2=0 (a≧2b),
  x2-ax-b2=0
を満たす正数xを長さにもつ線分を作図すること(図J)。たとえば、与えられた円に内接する正五角形、正十七角形などがこの方法で作図できる。一般にpが素数でp=2n+1(nは自然数)のとき、与えられた円に内接する正p角形は、定規とコンパスにより作図できる。

[栗田 稔]

基本作図〔図A〕
©Shogakukan">

基本作図〔図A〕

基本作図〔図B〕
©Shogakukan">

基本作図〔図B〕

基本作図〔図C〕
©Shogakukan">

基本作図〔図C〕

基本作図〔図D〕
©Shogakukan">

基本作図〔図D〕

基本作図〔図E〕
©Shogakukan">

基本作図〔図E〕

基本作図〔図F〕
©Shogakukan">

基本作図〔図F〕

基本作図〔図G〕
©Shogakukan">

基本作図〔図G〕

基本作図〔図H〕
©Shogakukan">

基本作図〔図H〕

図形の変換を利用する作図(相似法)〔図I〕
©Shogakukan">

図形の変換を利用する作図(相似法)〔図…

代数解析法〔図J〕
©Shogakukan">

代数解析法〔図J〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Zakuska (Russian: закуска/zakuska)

>>:  Author's Annual Events - Author's Annual Events

Recommend

Cotingidae

…A general term for birds of the Cotingidae famil...

Pocket History

…The editor was Dr. Miyoshi Tameyasu, a mathemati...

Corporate activities

…Decision-making becomes routine as described abo...

ṣalāt (English spelling) salat

…It is quite reasonable to assume that the kalima...

Regula magistri (English spelling)

…In the 5th and 6th centuries, Italy was in the m...

Takao Ishii

A title for Kabuki and Joruri. Original title Tosh...

Transvestism

…However, the ambiguous symbolism of sex is most ...

Veṇuāroha (English spelling)

… Later scholars praised him as the “knower of th...

Palamás, K.

…He wrote many highly advanced works that went be...

"Crime of Oyama Debuko" - Oyama Debuko's Crime

...In 1968, the Jiyugeki Theater merged with the ...

dialogue

…It is also written as 〈kohaku〉 or 〈haku〉. One co...

Set trip - Set trip

A packaged individual trip in which vehicle seats ...

Rabbit fish (English spelling)

...This species has pelvic fins with spines in fr...

Diodotos

…the Greek kingdom founded around 250 BCE by Diod...

OEM Supply - OEM Supply

...This refers to a production method or product ...