Paleontology - paleontology

Japanese: 古生物学 - こせいぶつがく(英語表記)paleontology
Paleontology - paleontology

This field aims to elucidate the patterns and mechanisms of biological evolution through the study of the structure, development, physiology, and ecology of organisms from the geological era (paleontology). Therefore, the main subject of research is fossils, which are concrete evidence of the existence of paleontology, but since the second half of the 20th century, research has also been conducted on extant species such as relict species.

[Tanabe Kazunari]

Research History

Fossil research

The study of fossils dates back to ancient Greece, but the correct understanding of fossils was given by Zhu Xi of China and Leonardo da Vinci of Italy. From the late 17th century to the 18th century, fossils came to be widely used as an effective tool for dividing and comparing strata, and eventually biostratigraphy was established by Steno of Denmark and W. Smith of England. The term paleontology was coined in 1834 by the French physicist Blainville and the German physicist Gotthelf Fischer von Waldheim (1771-1853) at almost the same time, but fossil research at that time was more of a descriptive paleontology based on geology than biology.

[Tanabe Kazunari]

Palaeontology as a biological science

On the other hand, paleontology as a biological science has progressed in parallel with the development of natural history since the 18th century. In particular, the achievements of the French physicist Cuvier, who introduced comparative anatomy to paleontology, Lamarck and C.R. Darwin, who explained the variability of species and laid the foundations for systematic evolution, and E.H. Haeckel, who emphasized the relationship between ontogeny and phylogeny and advocated the theory of recapitulation, are significant. Historically, paleontology started out as a practical application to serve geology, but after the 19th century it began to focus on the systematic classification of each taxonomic group, and with the discovery of Mendel's law it took a different path from modern evolutionary science, which focuses on extant species. Traditional paleontology, which mainly aims to describe and classify fossils, is divided into paleozoology and paleobotany according to the classification units of the fossils in question, and is further subdivided by era and taxonomic group.

[Tanabe Kazunari]

20th century and beyond

In the 1940s, a new taxonomy was born to replace typological taxonomy, and the idea that populations are the basic units of evolution became established. In the 1970s, biological paleontology was born, which actively studied theories and hypotheses of evolution derived from molecular biology, developmental biology, physiology, ecology, biogeography, etc., and verified and developed them from the standpoint of paleontology. Along with this theoretical transformation, the development and spread of scientific and chemical equipment such as electron microscopes, X-ray microanalyzers, DNA analyzers, gas chromatography, mass spectrometers, CT scans, synchrotron radiation analyzers, and computers also spurred the modernization of paleontology. With the introduction of these instruments, the research methods for fossils themselves went beyond the traditional description of external morphology, and new fields such as the analysis of the microstructure of tissues and cells, and the analysis of genes, proteins, and hydrocarbons were developed. Furthermore, it became possible to express geological ages and environmental factors in concrete values, expanding the scope of research.

Modern paleontology can be broadly divided into systematic paleontology, paleoecology, and geobiology according to the research goals at hand. Systematic paleontology studies the evolutionary processes and factors of paleontology, with the aim of analyzing the origin and phylogenetic relationships of higher taxa, clarifying the relationship between morphological and molecular evolution, the mechanism of species differentiation, trends in biodiversity change, and the causes of mass extinctions. Since the 1980s, the fields of molecular paleontology and organic geochemistry have been developed, which investigate the origin of life and evolution at the molecular level by examining microbial fossils such as bacteria, organic matter of biological origin (chemical fossils), and carbon isotope ratios in ancient strata such as those from the Precambrian era. Paleoecology regards biological evolution as an interaction (adaptation) with the environment, and includes fields such as paleophysiology, functional morphology, and paleoethology. Geobiology aims to investigate paleontology and the geological background surrounding it from the perspective of modern earth science. This is a further development of traditional biostratigraphy and includes paleoclimatology, paleoceanography, paleobiogeography, and paleobiochronology.

[Tanabe Kazunari]

"Introduction to Evolutionary Paleontology - Tracing the Evolution of Crustaceans, by Ikeya Masayuki and Yamaguchi Toshiyuki (1993, University of Tokyo Press)""Introduction to Paleontology, by Mashima Ryuichi and Ikeya Masayuki (1996)" ▽ "The Science of Paleontology 1: Overview and Classification of Paleontology, edited by Hayami Itaru and Mori Kei (1998)""The Science of Paleontology 2: Morphology and Analysis of Paleontology, edited by Tanabe Kazunari and Mori Kei (1999)""The Science of Paleontology 3: Life Histories of Paleontology, edited by Tanabe Kazunari and Ikeya Masayuki (2001, all Asakura Shoten)" ▽ "Paleontology, by Hayami Itaru (2009, University of Tokyo Press)""Encyclopedia of Paleontology, 2nd Edition, edited by the Paleontological Society of Japan (2010, Asakura Shoten)"

[References] | Relict species | Chemical fossils | Fossils | Cuvier | Paleontology | Steno | Smith | Darwin | Earth science | Geology|Natural history | Brainville | Molecular biology | Haeckel | Mendel's law | Lamarck

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

地質時代の生物(古生物)の体制・発生・生理・生態などの研究を通じて、生物進化の様式や機構の解明を目ざす分野。したがって、古生物の存在を示す具体的証拠である化石がおもな研究対象となるが、20世紀後半以降は遺存種などの現生種を含めた研究も行われるようになった。

[棚部一成]

研究史

化石の研究

化石の研究は古代ギリシアまでさかのぼるが、化石に対する正しい理解は中国の朱子(朱熹(しゅき))やイタリアのレオナルド・ダ・ビンチによって与えられた。17世紀末から18世紀にかけては、化石は、地層の時代区分や対比の有効な武器として広く利用されるようになり、やがてデンマークのステノ、イギリスのW・スミスらにより生層序学(生層位学)が確立された。古生物学ということばは1834年にフランスのブレーンビルとドイツのワルトハイムGotthelf Fischer von Waldheim(1771―1853)によりほぼ同時に提唱されたが、当時の化石の研究は、生物学よりも地質学を基礎にした記載古生物学的性格が強かった。

[棚部一成]

生物科学としての古生物学

一方、生物科学としての古生物学は18世紀以降の博物学の発展と並行して進められた。とくに古生物学に比較解剖学を導入したフランスのキュビエ、種の可変性を説き系統進化学の基礎をつくったラマルクやC・R・ダーウィン、さらに個体発生と系統発生との関係を重視し反復説を唱えたE・H・へッケルらの業績は大きい。歴史的には地質学への奉仕という応用面から出発した古生物学は、19世紀以降になると各分類群の系統分類に主眼を置くようになり、メンデルの法則の発見を契機に、現生種に対象を絞っていった近代進化学とは別の道を歩んでいった。化石の記載や分類を主目的とする従来の古生物学は、対象となる化石の分類単元に従って古動物学と古植物学に二分され、さらに時代別、分類群別に細分化している。

[棚部一成]

20世紀以降

1940年代に入ると類型分類学にかわる新分類学が誕生し、個体群が進化の基本単位であるとする考えが定着した。さらに1970年代に入ると、分子生物学、発生学、生理学、生態学、生物地理学などから得られた進化の理論や仮説を積極的に学び取り、それらを古生物学の立場から検証し発展させていく生物学的古生物学palaeobiologyが生まれた。このような理論面からの変革とともに、電子顕微鏡、X線マイクロアナライザー(電子線マイクロアナライザー)、DNA分析装置、ガスクロマトグラフィー、質量分析計、CTスキャン、シンクロトロン放射光分析装置、コンピュータなどの理化学機器の開発や普及も古生物学の近代化に拍車をかけたといえる。これらの機器の導入により、化石自体の研究法も、従来の外部形態の記載にとどまらず、組織や細胞の微細構造の解析や、遺伝子、タンパク質、炭化水素の分析などの新分野が開拓された。さらに地質年代や環境因子も具体的な値で示すことが可能となり、研究の範囲も広がった。

 現代の古生物学は、当面する研究目標に従って、系統古生物学、古生態学、地球生物学に大別される。系統古生物学では、古生物の進化の過程や要因について研究し、とくに高次分類群の起源や系統関係の解析、形態進化と分子進化の関係の解明、種の分化の機構、生物多様性変動の傾向や大量絶滅の原因の解明などを目的としている。また1980年代以降は、先カンブリア時代などの古い地層中のバクテリアなどの微生物化石や生物起源の有機物(化学化石)や炭素同位体比を調べて、生命の起源や分子レベルでの進化を探る分子古生物学や有機地球化学などの分野が開拓された。古生態学は、生物進化を環境との相互作用(適応)としてとらえ、古生理学・機能形態学・古行動学などの分野が含まれる。地球生物学は、古生物とそれを取り巻く地史的背景を現代地球科学の立場から調べることを目的とする。これは従来の生層序学をさらに発展させたもので、古気候学、古海洋学、古生物地理学、古生物年代学などが含まれる。

[棚部一成]

『池谷仙之・山口寿之著『進化古生物学入門――甲殻類の進化を追う』(1993・東京大学出版会)』『間嶋隆一・池谷仙之著『古生物学入門』(1996)』『速水格・森啓編『古生物の科学1 古生物の総説・分類』(1998)』『棚部一成・森啓編『古生物の科学2 古生物の形態と解析』(1999)』『棚部一成・池谷仙之編『古生物の科学3 古生物の生活史』(2001・以上朝倉書店)』『速水格著『古生物学』(2009・東京大学出版会)』『日本古生物学会編『古生物学事典 第2版』(2010・朝倉書店)』

[参照項目] | 遺存種 | 化学化石 | 化石 | キュビエ | 古生物 | ステノ | スミス | ダーウィン | 地球科学 | 地質学 | 博物学 | ブレーンビル | 分子生物学 | ヘッケル | メンデルの法則 | ラマルク

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Kose clan

>>:  Extinct animals and plants

IgE
IgE
Blog    

Recommend

Wellman, William

Born: February 29, 1896 in Brookline, Massachusett...

Perov (English spelling) Vasiliy Grigor'evich Perov

Russian painter. Born in Tobolsk, but some say he...

Stick dance - Bouodori

This is a folk art form of elegance in which danc...

Mitsuo Ikeda

...The All Japan Championships (freestyle only) b...

Osbeckia chinensis (English spelling) Osbeckiachinensis

…It is propagated by cuttings, cutting the tip of...

Juglans subcordiformis (English spelling) Juglanssubcordiformis

… [Okamoto Motoji]. … *Some of the terminology th...

The Record of the King of Personnel

This is the diary of Prince Shigeakira, son of Emp...

Messter, O. (English spelling) MessterO

...Below, we will trace the events that occurred ...

Ostwald, W.

…German chemist. Born in Riga, Latvia. His father...

Genoveva (English spelling)

A faithful and devout woman who appears in early m...

éclair (English spelling) eclair

...The baked shell is cut or holes are made in th...

Narai

A post town on the Nakasen Road in Chikuma County,...

Japan Socialist Party

Founded on November 2, 1945 (Showa 20) by members...

germinal center

…At this time, some lymphocytes break down and ar...

Childhood

This period is from about 6-7 years old to 11-12 y...