Congruent transformation

Japanese: 合同変換 - ごうどうへんかん
Congruent transformation

A mapping that maps a plane onto itself without changing the distance between any two points. There are three basic types: (1) rotation, (2) translation, and (3) symmetric. A rotation is a rotation around a fixed point by a fixed angle, a translation is a movement in a fixed direction by a fixed distance, and a symmetric transformation is a reflection about a fixed line. Any combination of these three types of translation, or a mapping that does not move any points, is a congruent transformation.

As long as the shape and size of any figure are not changed by the congruent transformation, that is, it is congruent to the original figure. In particular, if the points A, B, and C are A', B', and C', respectively, then △ABC and △A'B'C' are congruent, and the congruence conditions for triangles taught in elementary mathematics are [1] AB=A'B',BC=B'C',CA=C'A' (equal sides)
[2] AB=A'B', BC=B'C', ∠ABC=∠A'B'C' (two included angles are equal)
[3] AB=A'B', ∠CAB=∠C'A'B', ∠ABC=∠A'B'C' (one side and both end angle phases, etc.)
Meet the following.

A mapping that maps a space onto itself without changing the distance between any two points is called a congruent transformation (in space), and the basic ones are (1) parallel translation, (2) symmetric translation on a plane, and (3) rotation around a line. The properties of any figure and the figure obtained by congruent transformation of it being congruent are the same as in the case of a plane.

[Ryoichi Takagi]

Congruent transformations (rotation, translation, symmetry)
©Shogakukan ">

Congruent transformations (rotation, translation, symmetry...)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

平面を自分自身の上へ写す写像で、任意の2点間の距離を変えないものをいう。基本的なものとして、(1)回転移動、(2)平行移動、(3)対称移動、の3種類がある。定点の周りを定角だけ回すのが回転移動であり、定方向に定距離だけ動かすのが平行移動であり、定直線に関して折り返すのが対称移動である。この3種類の移動をいくつか組み合わせたものも、あるいは任意の点を動かさないという写像も合同変換である。

 なお、合同変換で写す限り、任意の図形は形状と大きさを変えない、すなわち、元の図形と合同である。とくに、3点A、B、Cを合同変換で写した点をA'、B'、C'とすれば、△ABCと△A'B'C'は合同になり、初等数学で教える三角形の合同条件
〔1〕AB=A'B',BC=B'C',CA=C'A'          (三辺相等)
〔2〕AB=A'B',BC=B'C',∠ABC=∠A'B'C'      (二辺夾角(きょうかく)相等)
〔3〕AB=A'B',∠CAB=∠C'A'B', ∠ABC=∠A'B'C' (一辺両端角相等)
を満たす。

 空間を空間自身の上へ写す写像で、任意の2点間の距離を変えないものを(空間上の)合同変換といい、(1)平行移動、(2)平面に関する対称移動、(3)直線の周りの回転移動、が基本的である。任意の図形と、それを合同変換した図形が合同になるなどの性質は、平面の場合と同様である。

[高木亮一]

合同変換(回転移動、平行移動、対称移動)
©Shogakukan">

合同変換(回転移動、平行移動、対称移動…


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  High Commissioner - High Commissioner

>>:  Imperial Way Faction

Recommend

Asahi Dow [Stock] - Asahi Dow

...The company is also involved in the production...

Le Loi (English spelling)

1385‐1433 Founder of the Later Le Dynasty of Vietn...

Lakedion

…In Germany, he is associated with a figure named...

Kojima Usui

Mountaineer and art researcher. His real name was...

Africa - Africa (English spelling)

Overview The African continent has an area of ​​a...

Marek, KW (English spelling) MarekKW

…German journalist and author. His real name was ...

Dingo - Dingo (English spelling)

An animal of the order Carnivora, family Canidae....

Via Aurelia - Aurelia Road (English name)

A Roman highway built before the 2nd century BC, 2...

Keian Imperial Notice - Keian Imperial Notice

This is a notice issued by the shogunate in Febru...

lady's-tresses (English)

…The species as a whole is widely distributed fro...

Ryutaro Otomo

1912-1985 An actor from the Showa era. Born June ...

Exothermic reaction - exothermic reaction

A chemical reaction in which heat is generated wh...

Izmail (English spelling) Izmail

A city in Odessa Oblast in southern Ukraine. Popu...

San-she-fa (English spelling)

The educational system of the Northern Song Dynast...