Changing of the guard ceremony

Japanese: 交代式 - こうたいしき
Changing of the guard ceremony

In a polynomial with n variables x 1 , x 2 , ..., x n , if exchanging any two variables results in an equation with only the sign of the original equation changed, then the equation is said to be an alternating equation with respect to x 1 , x 2 , ..., x n . For example, a polynomial with two variables x and y, f(x, y)=x 3 -x 2 y+xy 2 -y 3
Swap x and y to create a new polynomial.

f(y, x)=y 3 -y 2 x+yx 2 -x 3
This polynomial is the original polynomial f(x, y) multiplied by -1. In other words, f(y, x)=-f(x, y)
An alternating polynomial is a polynomial that considers these properties by increasing the number of variables. In other words, if you swap x i and x j for different i and j in a polynomial f(x 1 , x 2 , …, x n ) with n variables x 1 , x 2 , …, x n , you can get f(x 1 , x 2 , …, x j , …, x i , …, x n ) from the original polynomial f(x 1 , x 2 , …, x i , …, x j , …, x n ). When comparing these two polynomials,
(*) f(x 1 ,…, x i ,…, x j ,…, x n )=−f(x 1 ,…, x j ,…, x i ,…, x n )
When this holds for any distinct i and j, the polynomial f is called an alternating polynomial. Instead of (*), f(x 1 ,…, x i ,…, x j ,…, x n )=f(x 1 ,…, x j ,…, x i ,…, x n )
The equation is symmetric.

The sum and difference of two alternating expressions are also alternating expressions, but their product is a symmetric expression. Also, the product of a symmetric expression and an alternating expression is an alternating expression. The simplest and most important alternating expression in n variables is

This Δ n is called a difference product because it is the product of subtracting (x i -x j ) for all i and j such that 1≦i<j≦n. For example, Δ 2 =x 1 -x 2 ,
Δ 3 = (x 1 - x 2 )(x 1 - x 3 )(x 2 - x 3 )
(*) If we substitute x i = x j in the formula, we get f(x 1 ,…, x i ,…, x i ,…, x n ) = -f(x 1 ,…, x i ,…, x i ,…, x n )
Therefore, we obtain f(x 1 , ..., x i , ..., x i , ..., x n ) = 0, so the alternating function f(x 1 , ..., x n ) has a solution x j as a univariate polynomial in x i and is divisible by (x i - x j ). Therefore, since it is divisible by any difference (x i - x j ) (i < j), it is divisible by their product, the difference product Δ n.

f(x 1 ,……, x n )= Δ n・s(x 1 ,……, x n )
Consider a polynomial s(x 1 ,……,x n ) such that f and Δ n are symmetric, so s is a symmetric equation. Using the Fundamental Theorem of Symmetric Equations, s is a polynomial in the fundamental symmetric equations s 1 , s 2 ,……,s n . Here,

Therefore, any alternating function is the product of a polynomial and a difference product of an elementary symmetric function. This result is used to factorize alternating functions, for example, x 3 -x 2 y + xy 2 -y 3
is an alternating function, so it can be divided by Δ 2 =x-y. When you actually do the division, you get the quotient x 2 +y 2 , so x 3 -x 2 y+xy 2 -y 3
= Δ 2 (x 2 + y 2 )= Δ 2 (s 1 2 −2s 2 )
It becomes.

[Tsuneo Kanno]

[Reference item] | Symmetric expression

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

n個の変数x1、x2、…、xnの多項式において、任意の二つの変数を交換すると、もとの式の符号だけを変えた式が得られるとき、その式はx1、x2、…、xnに関する交代式であるという。たとえば、二つの変数x、yの多項式
  f(x, y)=x3-x2y+xy2-y3
のxとyを入れ換えて新しい多項式をつくる。

  f(y, x)=y3-y2x+yx2-x3
この多項式はもとの多項式f(x, y)に-1を掛けたものになる。つまり
  f(y, x)=-f(x, y)
 このような多項式の性質を、変数を増やして考えたものが交代式である。つまり、n個の変数x1、x2、…、xnの多項式f(x1, x2,…, xn)で異なるiとjに対し、xiとxjを入れ換えると、もとの多項式f(x1, x2,…, xi,…, xj,…, xn)からf(x1, x2,…, xj,…, xi,…, xn)ができる。この二つの多項式を比べたとき、
  (*) f(x1,…, xi,…, xj,…, xn)=-f(x1,…, xj,…, xi,…, xn)
が任意の相異なるiとjに対して成り立つとき、この多項式fを交代式という。(*)のかわりに
  f(x1,…, xi,…, xj,…, xn)=f(x1,…, xj,…, xi,…, xn)
が成り立つのが対称式である。

 二つの交代式の和、差はまた交代式であるが、積は対称式になる。また、対称式と交代式の積は交代式である。n変数の交代式でいちばん簡単で重要なものは

である。このΔnは1≦i<j≦nなるすべてのi、jに対し、差(xi-xj)をつくり、その積をとったものであるから、差積といわれる。たとえば
  Δ2=x1-x2,
  Δ3=(x1-x2)(x1-x3)(x2-x3)
である。(*)式でxi=xjと置いてみると
  f(x1,…, xi,…, xi,…, xn)=-f(x1,…, xi,…, xi,…, xn)
となり、f(x1,…, xi,…, xi,…, xn)=0を得るから、交代式f(x1,……, xn)はxiの一変数多項式として解xjをもち、(xi-xj)で割り切れる。したがって任意の差(xi-xj)(i<j)で割り切れるから、それらの積である差積Δnで割り切れる。

  f(x1,……, xn)=Δn・s(x1,……, xn)
なる多項式s(x1,……, xn)を考えると、fとΔnは交代式であるから、sは対称式になる。ここで対称式の基本定理を使うと、sは基本対称式s1、s2、……、snの多項式になる。ここで

である。ゆえに任意の交代式は、基本対称式の多項式と差積の積になる。この結果は交代式の因数分解などに使われる。たとえば
 x3-x2y+xy2-y3
は交代式であるからΔ2=x-yで割り切れる。実際割り算を行って、商x2+y2を得るから
 x3-x2y+xy2-y3
  =Δ2(x2+y2)=Δ2(s12-2s2)
となる。

[菅野恒雄]

[参照項目] | 対称式

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Change of Command Ceremony

>>:  Kodaiji Temple

Recommend

Marine Energy - Kaiyo Energy

A general term for the mechanical and thermal ener...

The Tale of Asakura Soteki - Asakura Soteki

This is a transcript of moralistic chats by the Se...

National Proclamation

A migyosho (decree) issued by a chigyo kokushu (p...

Lady Pearl - Shinju Fujin

A full-length novel by Kikuchi Kan. It was seriali...

Cabriole - Coverall

…a dancer who dances in a group and who, together...

Sun Road - Sun Road

This road runs through Glacier National Park in Mo...

Iris Susiana

… Other species have bulbs with enlarged rhizomes...

Luz del Mundo (English spelling) Luz del Mundo

… [Protestant] Protestantism has only begun to sp...

Miyasudokoro - Palace

A title for the ladies who served in the emperor&...

Iḷaṅkō‐v‐aṭikaḷ (English spelling)

Author of the Tamil (South Indian) epic poem Silpa...

Avila - Abira (English spelling) Ávila

The capital of Avila Province in the Castilla y L...

Evergreen State

…The Cascade Mountains run north to south through...

Inukoriyanagi - Inukoriyanagi

A deciduous shrub of the Salicaceae family (APG c...

Migration - Ijyu (English spelling) migration

It refers to changing one's place of residence...

Anchor beetle

A species of the family Cicindelidae in the order ...