This is a law about the order of combinations of arithmetic operations. It is also called the associative law. For example, 2+(3+5) and (2+3)+5 are both equal to 10, and 2×(3×5) and (2×3)×5 are both equal to 30. For one arithmetic operation (゜) and elements a, b, and c, the combination (a゜b)゜c of a with b and the result of combining it with c is equal to the combination a゜(b゜c) of a with b and c first. In other words, this law is related only to the order of a, b, and c, and not to the order of combinations. This law not only applies to the addition (+), multiplication (×), and composition of maps (゜), but also to propositions, for example, Aand(BandC) and (AandB)andC are equivalent. However, there are many cases where the associative law does not apply, such as (2÷3)÷2=2/6 but 2÷(3÷2)=4/3. [Namba Kanji] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
算法の結合の順序に関する法則。結合律ともいう。たとえば2+(3+5)や(2+3)+5はともに10であり、2×(3×5)や(2×3)×5はともに30に等しいというように、一つの算法(゜)と元a、b、cについて、最初にaとbを結合し、その結果にcを結合したもの(a゜b)゜cと、aと先にbとcを結合した結果との結合a゜(b゜c)が等しいという法則である。つまりa、b、cの順序のみに関係して結合の順には関係しないという法則である。この法則は数の加法(+)、乗法(×)、写像の合成(゜)などについて成立するのみならず、たとえば命題についてもAand(BandC)と(AandB)andCが同値であるという意味で成立する。しかしたとえば、(2÷3)÷2=2/6であるが2÷(3÷2)=4/3のように結合法則の成立しない例も多い。 [難波完爾] 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
...Treatment is the same as for migraine headache...
…6, -5, 8, 9, -2, and -1 are also cosets. A class...
A common name for magnetic cards for cash dispense...
A general term for the national expressways that r...
This is a technique in which the bowstring is pul...
An insect of the family Tineidae in the order Lepi...
...Later, in the late 16th century, musicians fro...
During a total solar eclipse (→ total eclipse), ju...
1296‐1377 Grand Duke of Lithuania. Reigned 1345-77...
A sect of Pure Land Buddhism founded by the late ...
1912-1986 American architect. December 1, 1912 Bo...
Born April 17, 1820 in New York, New York [Died] J...
Dates of birth and death unknown. A scholar of th...
A term used in symbolic processing to refer to a ...
…Headquarters: Montvale, New Jersey. Founded in 1...