When we expand the idea of functions to include functions that take the complex number z as a variable and take complex values, and consider differentiation and integration, not only do we find interesting and useful properties that are different from ordinary differentiation and integration, but we also become able to think about differentiation and integration theorems in a unified way. This area of mathematical research is called function theory or complex function theory, and was started by such people as Cauchy of France, and Riemann and Weierstrass of Germany. Let w = f(z) be a complex-valued function defined in a region D of the complex plane, and let the derivative at z 0 be (when a limit exists) When a function is differentiable at each point in the domain D, the function is said to be regular in D. A complex function w = f(z) can be thought of as a transformation that maps the point z = x + iy on the complex plane to w = u + iv, but one property of a holomorphic function is that if f'(c) ≠ 0, the two curves C 1 and C 2 that pass through point c are mapped to the two curves Γ 1 and Γ 2 that pass through f(c) on the w plane, and in this case, the angle formed by C 1 and C 2 at c is equal to the angle formed by Γ 1 and Γ 2 at f(c) ( ). This property is called the conformality of the transformation represented by a holomorphic function, and is used in fluid dynamics, electromagnetism, etc. Let us define the integral of a regular function f(z) on a domain D as follows. Let C be a smooth curve with values within D, z(t) ; a≦t≦b. This is commonly used to find definite integrals of ordinary real functions. [Haruo Sunouchi] ©Shogakukan "> Properties of regular functions (diagram) Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
関数の考えを、複素数zを変数とし、複素数の値をとる関数にまで広げて、微分や積分を考えると、普通の微分・積分と違った、おもしろい、また役にたつ性質をもつばかりでなく、微分・積分の定理を統一的に考えることができるようになる。このような数学の研究領域を関数論または複素関数論といい、フランスのコーシー、ドイツのリーマン、ワイアシュトラースらによって始められた。 w=f(z)を複素平面の、ある領域Dで定義された複素数の値をとる関数とし、z0における微分係数を(極限値が存在するとき) 領域Dの各点で微分可能なとき、この関数はDにおいて正則であるという。複素関数w=f(z)は、複素平面の点z=x+iyをw=u+ivに写す変換と考えられるが、正則関数の一つの性質として、f′(c)≠0ならば、点cを通る二つの曲線C1、C2はw平面のf(c)を通る二つの曲線Γ1、Γ2に写されるが、このとき、cにおいてC1、C2のつくる角は、f(c)において、Γ1、Γ2のつくる角に等しい( )。この性質を正則関数の表す変換の等角性といい、流体力学、電磁気学などで利用される。 領域D上の正則関数f(z)の積分を次のように定義する。D内に値をとる滑らかな曲線Cをz(t) ; a≦t≦bと表すとき、 これは、普通の実関数の定積分を求めるのによく用いられる。 [洲之内治男] ©Shogakukan"> 正則関数の性質〔図〕 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
This is a report that issuers of securities must p...
A synchrotron is a device built to store electron ...
A city in central Kochi prefecture facing Tosa Bay...
… [Other chorea] In addition to the above, sympto...
A former town in Kami County in northwest Miyagi P...
A surfactant that increases the ability of a solid...
A tall tree, shrub or herbaceous plant of the leg...
A cappella is a group of musicians who composed c...
The capital of Mendoza Province, located in the we...
…Because the bamboo shoots have a bitter taste, t...
…(2) Champs contigus: These are found in Europe i...
… In addition to these, there are two other stony...
〘 noun 〙 To deal with an incident or problem well....
...Microparticle magnets utilize the large coerci...
…[Kazumi Tsuchiya]. . … *Some of the terminology ...