Function theory - Kansuuron

Japanese: 関数論 - かんすうろん
Function theory - Kansuuron

When we expand the idea of ​​functions to include functions that take the complex number z as a variable and take complex values, and consider differentiation and integration, not only do we find interesting and useful properties that are different from ordinary differentiation and integration, but we also become able to think about differentiation and integration theorems in a unified way. This area of ​​mathematical research is called function theory or complex function theory, and was started by such people as Cauchy of France, and Riemann and Weierstrass of Germany.

Let w = f(z) be a complex-valued function defined in a region D of the complex plane, and let the derivative at z 0 be (when a limit exists)

Defined by

This definition is the same as that in normal differentiation, but by dividing complex numbers into real and imaginary parts,
z=x+iy, f(z)=u(x,y)+iv(x,y)
Then, the necessary and sufficient condition for z 0 = x 0 + iy 0 to be differentiable is that u(x,y) and v(x,y), considered as functions of two variables (x,y), are totally differentiable with respect to (x 0 ,y 0 ), and

holds (the Cauchy-Riemann differential equation).

When a function is differentiable at each point in the domain D, the function is said to be regular in D. A complex function w = f(z) can be thought of as a transformation that maps the point z = x + iy on the complex plane to w = u + iv, but one property of a holomorphic function is that if f'(c) ≠ 0, the two curves C 1 and C 2 that pass through point c are mapped to the two curves Γ 1 and Γ 2 that pass through f(c) on the w plane, and in this case, the angle formed by C 1 and C 2 at c is equal to the angle formed by Γ 1 and Γ 2 at f(c) ( Figure ). This property is called the conformality of the transformation represented by a holomorphic function, and is used in fluid dynamics, electromagnetism, etc.

Let us define the integral of a regular function f(z) on a domain D as follows. Let C be a smooth curve with values ​​within D, z(t) ; a≦t≦b.

is called the integral along the curve C,

If C is a simple closed curve in D, then in particular, Cauchy's integral theorem

This leads to many useful theorems about holomorphic functions. For example, for a point c in the interior of C,

holds (Cauchy's integral theorem). From this, we can say that regular functions can be differentiated any number of times, and can be expanded by Taylor expansion. Near c,

When there is an irregular point (called a singular point) a on the closed curve C,

is not necessarily 0. When a is the only singular point in C, the above value is called the residue of the function f(z) at a. The residue can be found without calculating the integral value,

If is finite, then this value is equal to the residue at a. Therefore, we can use this limit to find the value of the integral.

This is commonly used to find definite integrals of ordinary real functions.

[Haruo Sunouchi]

Properties of regular functions (diagram)
©Shogakukan ">

Properties of regular functions (diagram)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

関数の考えを、複素数zを変数とし、複素数の値をとる関数にまで広げて、微分や積分を考えると、普通の微分・積分と違った、おもしろい、また役にたつ性質をもつばかりでなく、微分・積分の定理を統一的に考えることができるようになる。このような数学の研究領域を関数論または複素関数論といい、フランスのコーシー、ドイツのリーマン、ワイアシュトラースらによって始められた。

 w=f(z)を複素平面の、ある領域Dで定義された複素数の値をとる関数とし、z0における微分係数を(極限値が存在するとき)

によって定義し、

などと表す。この定義は、普通の微分における定義と同じであるが、複素数を実部と虚部に分けて、
  z=x+iy, f(z)=u(x,y)+iv(x,y)
と表すと、z0=x0+iy0において微分可能になる必要十分条件は、2変数(x,y)の関数と考えたu(x,y), v(x,y)が(x0,y0)で全微分可能、しかも、

が成り立つことである(コーシー‐リーマンの微分方程式)。

 領域Dの各点で微分可能なとき、この関数はDにおいて正則であるという。複素関数w=f(z)は、複素平面の点z=x+iyをw=u+ivに写す変換と考えられるが、正則関数の一つの性質として、f′(c)≠0ならば、点cを通る二つの曲線C1、C2はw平面のf(c)を通る二つの曲線Γ1、Γ2に写されるが、このとき、cにおいてC1、C2のつくる角は、f(c)において、Γ1、Γ2のつくる角に等しい()。この性質を正則関数の表す変換の等角性といい、流体力学、電磁気学などで利用される。

 領域D上の正則関数f(z)の積分を次のように定義する。D内に値をとる滑らかな曲線Cをz(t) ; a≦t≦bと表すとき、

を、曲線Cに沿っての積分といい、

と書く。CがD内の単純閉曲線ならば、とくに、コーシーの積分定理

が成り立つ。これから、正則関数の多くの有用な定理が導かれる。たとえば、Cの内部にある点cに対し、

が成り立ち(コーシーの積分定理)、これから、正則関数は何回でも微分可能であり、テーラー展開ができて、cの近くで、

と表されることがわかる。閉曲線C内に正則でない点(特異点という)aがあるとき、

は0になるとは限らない。aがC内のただ一つの特異点のとき、上の値を関数f(z)のaにおける留数(りゅうすう)という。留数は積分の値を計算しなくても、

が有限確定ならば、この値がaにおける留数に等しい。したがって、この極限値を用いて積分の値を求めることができる。

 これは、普通の実関数の定積分を求めるのによく用いられる。

[洲之内治男]

正則関数の性質〔図〕
©Shogakukan">

正則関数の性質〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Scroll book - Kansubon

>>:  Functional space

Recommend

Securities report - Annual securities report

This is a report that issuers of securities must p...

Storage ring

A synchrotron is a device built to store electron ...

Kochi [city] - Kochi

A city in central Kochi prefecture facing Tosa Bay...

hemichorea

… [Other chorea] In addition to the above, sympto...

Miyazaki [town] - Miyazaki

A former town in Kami County in northwest Miyagi P...

Wetting agent

A surfactant that increases the ability of a solid...

Senna - Senna (English spelling)

A tall tree, shrub or herbaceous plant of the leg...

Nanino, GM (English spelling) NaninoGM

A cappella is a group of musicians who composed c...

Mendoza (English spelling)

The capital of Mendoza Province, located in the we...

Karatake - Karatake

…Because the bamboo shoots have a bitter taste, t...

champs dissociés (English spelling) champs dissocies

…(2) Champs contigus: These are found in Europe i...

Siderophyre

… In addition to these, there are two other stony...

Solution

〘 noun 〙 To deal with an incident or problem well....

OP Magnet - OP Magnet

...Microparticle magnets utilize the large coerci...

Polygonum sachalinense (English spelling) Polygonumsachalinense

…[Kazumi Tsuchiya]. . … *Some of the terminology ...