A space that introduces algebraic operations and topology to a set of functions. When trying to find the maximum of a functional I ( f ) determined for a function f in the calculus of variations, one must consider Weierstrass's theorem in the space Ω with f as an element. Let Ω be the set of all real-valued or complex-valued continuous functions of one or n variables. If a topology is given to Ω , it becomes a topological space. Since the elements of the topological space created in this way are functions, Ω is called a function space. There are various ways to give a topology to such a set of functions Ω , but a common method is to introduce a topology so that Ω becomes a metric space. For example, if Ω is the set of all continuous functions defined on the closed interval [0, 1], and the distance between any two elements f ( x ) and g ( x ) ( x ∈ [0, 1]) in Ω is defined as the upper bound of | f ( x ) -g ( x )|, that is, ρ( f , g ) = sup | f ( x ) -g ( x )|, then Ω becomes a metric space with respect to the distance ρ. Therefore, Ω is a topological space, and therefore a function space. Function spaces are both topological and vector spaces. To achieve this, it is only necessary to define the basic operations of vector spaces, f + g and a times f (where a is a scalar), for any two elements f and g in Ω. The theory of function spaces is a general means of unifying many problems in modern analysis as applications of topology. Hilbert spaces and Banach spaces are spaces that are fundamental to the study of function spaces. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
関数のなす集合に,代数的演算や位相を導入した空間。変分法で,関数 f に対して定まる汎関数 I(f) の極大を論じようとするときなど,f を元とする空間 Ω でのワイエルシュトラスの定理を問題にしなければならなくなる。いま,1変数あるいは n 変数の,実数値あるいは複素数値連続関数全体の集合を Ω とする。ここで Ω に位相を与えれば,Ω は位相空間になる。こうしてできた位相空間の元は関数であるから,Ω は関数空間と呼ばれる。このような関数の集合 Ω に位相を与える方法はいろいろあるが,一般には,Ω が距離空間になるように位相を導入する。たとえば,閉区間 [0,1] で定義された連続関数全体の集合を Ω とするとき,Ω の任意の 2元 f(x),g(x)(x∈[0,1]) の距離を |f(x)-g(x)| の上限,すなわち ρ(f,g)= sup |f(x)-g(x)| と定義すれば,Ω は距離ρについての距離空間となる。したがって Ω は位相空間となり,それゆえ関数空間である。また関数空間は,位相空間であるとともに,ベクトル空間ともなる。それには Ω の任意の 2元 f,g に対して,ベクトル空間の基本演算である和 f+g および f の a 倍 (a はスカラー) を,自然に定義すればよい。関数空間の理論は,現代解析学の多くの問題を位相数学の応用として,統一的に取扱うための一般的な手段である。関数空間の研究に基本的な意味をもつ空間に,ヒルベルト空間やバナッハ空間がある。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: Function theory - Kansuuron
…That is, all nouns are classified into several c...
(Tosa City and Susaki City, Kochi Prefecture) A to...
…They are classified according to the purpose of ...
...The descendants of the slaves who were brought...
International Association of Athletics Federation ...
〘Noun〙 Heavenly River. Milky Way. Heavenly Han. ※T...
A local information magazine. Its history is thou...
Compounds of iron and chlorine. Compounds with ox...
…The market was located in the center of the town...
Born: Around 450 BC. Athens [Died] circa 388 BC. A...
...The next most famous work is "Taiheiki Ch...
A type of water tube boiler. Water is supplied to...
A short story by Russian author N. Gogol. Publishe...
...This family was established in a series of pap...
...The autobahn to Salzburg and Seebenstein has a...