Functional space

Japanese: 関数空間 - かんすうくうかん(英語表記)functional space
Functional space
A space that introduces algebraic operations and topology to a set of functions. When trying to find the maximum of a functional I ( f ) determined for a function f in the calculus of variations, one must consider Weierstrass's theorem in the space Ω with f as an element. Let Ω be the set of all real-valued or complex-valued continuous functions of one or n variables. If a topology is given to Ω , it becomes a topological space. Since the elements of the topological space created in this way are functions, Ω is called a function space. There are various ways to give a topology to such a set of functions Ω , but a common method is to introduce a topology so that Ω becomes a metric space. For example, if Ω is the set of all continuous functions defined on the closed interval [0, 1], and the distance between any two elements f ( x ) and g ( x ) ( x ∈ [0, 1]) in Ω is defined as the upper bound of | f ( x ) -g ( x )|, that is, ρ( f , g ) = sup | f ( x ) -g ( x )|, then Ω becomes a metric space with respect to the distance ρ. Therefore, Ω is a topological space, and therefore a function space. Function spaces are both topological and vector spaces. To achieve this, it is only necessary to define the basic operations of vector spaces, f + g and a times f (where a is a scalar), for any two elements f and g in Ω. The theory of function spaces is a general means of unifying many problems in modern analysis as applications of topology. Hilbert spaces and Banach spaces are spaces that are fundamental to the study of function spaces.

Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information

Japanese:
関数のなす集合に,代数的演算や位相を導入した空間。変分法で,関数 f に対して定まる汎関数 I(f) の極大を論じようとするときなど,f を元とする空間 Ω でのワイエルシュトラスの定理を問題にしなければならなくなる。いま,1変数あるいは n 変数の,実数値あるいは複素数値連続関数全体の集合を Ω とする。ここで Ω に位相を与えれば,Ω は位相空間になる。こうしてできた位相空間の元は関数であるから,Ω は関数空間と呼ばれる。このような関数の集合 Ω に位相を与える方法はいろいろあるが,一般には,Ω が距離空間になるように位相を導入する。たとえば,閉区間 [0,1] で定義された連続関数全体の集合を Ω とするとき,Ω の任意の 2元 f(x),g(x)(x∈[0,1]) の距離を |f(x)-g(x)| の上限,すなわち ρ(fg)= sup |f(x)-g(x)| と定義すれば,Ω は距離ρについての距離空間となる。したがって Ω は位相空間となり,それゆえ関数空間である。また関数空間は,位相空間であるとともに,ベクトル空間ともなる。それには Ω の任意の 2元 fg に対して,ベクトル空間の基本演算である和 fg および fa 倍 (a はスカラー) を,自然に定義すればよい。関数空間の理論は,現代解析学の多くの問題を位相数学の応用として,統一的に取扱うための一般的な手段である。関数空間の研究に基本的な意味をもつ空間に,ヒルベルト空間やバナッハ空間がある。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

<<:  Function theory - Kansuuron

>>:  Functional analysis

Recommend

Kasele language - Kaselego

…That is, all nouns are classified into several c...

Uranouchi Bay - Uranouchiwan

(Tosa City and Susaki City, Kochi Prefecture) A to...

Delaine Merino

…They are classified according to the purpose of ...

Forros

...The descendants of the slaves who were brought...

IAAF - IAAF

International Association of Athletics Federation ...

Tenga

〘Noun〙 Heavenly River. Milky Way. Heavenly Han. ※T...

Town magazine - Town magazine (English)

A local information magazine. Its history is thou...

Iron chloride

Compounds of iron and chlorine. Compounds with ox...

Market Peace - Ichiba Heiwa

…The market was located in the center of the town...

Aristophanes

Born: Around 450 BC. Athens [Died] circa 388 BC. A...

"Uraomote Chushingura"

...The next most famous work is "Taiheiki Ch...

Once-through boiler

A type of water tube boiler. Water is supplied to...

Coat - Gaito (English spelling) Shinel'

A short story by Russian author N. Gogol. Publishe...

Austric

...This family was established in a series of pap...

Schwechat

...The autobahn to Salzburg and Seebenstein has a...