The equation (transformation) between two coordinate systems that are moving at a uniform speed relative to each other and in which the basic laws of Newtonian mechanics hold true. Newton's first law states that if an object is not acted upon, it will continue to move at a uniform speed in a straight line. This is also called the law of inertia, and a coordinate system in which this holds true is called an inertial system. In two coordinate systems that are moving at a uniform speed relative to each other, the laws of mechanics are the same. There are an infinite number of such inertial systems, and the fact that they are mechanically equivalent means that there is no absolute reference system that has a special meaning relative to other inertial systems. This is Galileo's principle of relativity in Newtonian mechanics (classical mechanics). It is necessary to explain why structures on the surface of the earth that move at high speeds in space can exist stably, but Galileo's principle of relativity provides a logical basis for this. The two inertial systems are the K system, which describes the positions of spatial points in xyz coordinates, and the K system , which describes the positions in x'y'z ' coordinates. The Galilean transformation that relates these two systems is, for example, between the position coordinates of the same mass point when K ' is moving at a constant velocity V along the x- axis of K , as follows: When the magnitude of V becomes too large to be ignored compared to the speed of light, the above assumption does not hold, and time also undergoes a transformation. In other words, the Galilean transformation should be replaced by the Lorentz transformation of the special theory of relativity. In other words, the Galilean transformation holds as the limit where the relative velocity V in the Lorentz transformation is very small compared to the speed of light. [Ryozo Tamagaki] [Reference] | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
ニュートン力学の基本法則が成り立ち、互いに等速度運動をしている二つの座標系の間の関係式(変換)。ニュートンの第一法則は、物体はなんの作用も受けないならば、等速直線運動を続けると表される。これは慣性の法則ともよばれ、これが成り立つ座標系を慣性系という。互いに等速直線運動をする二つの座標系においては、力学の法則は同一である。このような慣性系は無限に多く存在し、それらが力学的に同等であることは、他の慣性系に対して特別な意味をもつ絶対基準系が存在しないことを意味する。これが、ニュートン力学(古典力学)におけるガリレイの相対性原理である。宇宙空間を高速で動く地表の構造物がなぜ安定に存在するかは説明を要するが、ガリレイの相対性原理はこれに対して論理的根拠を与えたのである。空間点の位置をxyz座標で記すK系とx'y'z'座標で記すK'系を二つの慣性系とする。この二つの系を関係づけるガリレイ変換は、たとえばK'がKのx軸に沿って一定の速度Vで運動しているとき、同一の質点の位置座標の間で、 Vの大きさが光速に比して無視できないくらいに大きくなると、前記の仮定は成り立たず、時間もまた変換を受ける。すなわち、ガリレイ変換は特殊相対性理論のローレンツ変換にとってかわられるべきものである。換言すれば、ガリレイ変換は、ローレンツ変換における相対速度Vが光速に比して非常に小さい極限として成り立つ。 [玉垣良三] [参照項目] | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
〘noun〙① Something that passes from one place to an...
A Neolithic shell mound at the tip of the Liaodong...
A geological period in the late Paleozoic Era, sp...
A fairy tale by the German-French author FHK Fouqu...
Year of death: 1259.12.26 (11.12) Year of birth: J...
Born: June 1, 1892. [Died] April 25, 1960. The six...
〘Noun〙 ("Miko" means Miko and "Koku...
A group of national cartel-like economic control ...
An ukiyo-e artist from the mid-Edo period. The fo...
Denmark's largest island (excluding Greenland)...
A Russian female poet. Graduated from the Faculty...
〘Noun〙① An ancient five-stringed biwa. It has five...
A former town in Nakajima-gun, occupying the centr...
…However, because the supply of free goods is rel...
This is an annual event held on June 27th of the ...