Galilean transformation

Japanese: ガリレイ変換 - がりれいへんかん(英語表記)Galilean transformation
Galilean transformation

The equation (transformation) between two coordinate systems that are moving at a uniform speed relative to each other and in which the basic laws of Newtonian mechanics hold true. Newton's first law states that if an object is not acted upon, it will continue to move at a uniform speed in a straight line. This is also called the law of inertia, and a coordinate system in which this holds true is called an inertial system. In two coordinate systems that are moving at a uniform speed relative to each other, the laws of mechanics are the same. There are an infinite number of such inertial systems, and the fact that they are mechanically equivalent means that there is no absolute reference system that has a special meaning relative to other inertial systems. This is Galileo's principle of relativity in Newtonian mechanics (classical mechanics). It is necessary to explain why structures on the surface of the earth that move at high speeds in space can exist stably, but Galileo's principle of relativity provides a logical basis for this. The two inertial systems are the K system, which describes the positions of spatial points in xyz coordinates, and the K system , which describes the positions in x'y'z ' coordinates. The Galilean transformation that relates these two systems is, for example, between the position coordinates of the same mass point when K ' is moving at a constant velocity V along the x- axis of K , as follows:
x '= x - Vt , y '= y , z '= z
In this case, the passage of time is the same in both inertial systems, that is, time is assumed to be absolute, that is, time is invariant under transformation ( t ' = t ).

When the magnitude of V becomes too large to be ignored compared to the speed of light, the above assumption does not hold, and time also undergoes a transformation. In other words, the Galilean transformation should be replaced by the Lorentz transformation of the special theory of relativity. In other words, the Galilean transformation holds as the limit where the relative velocity V in the Lorentz transformation is very small compared to the speed of light.

[Ryozo Tamagaki]

[Reference] | Inertial system | Principle of relativity | Lorentz transformation

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

ニュートン力学の基本法則が成り立ち、互いに等速度運動をしている二つの座標系の間の関係式(変換)。ニュートンの第一法則は、物体はなんの作用も受けないならば、等速直線運動を続けると表される。これは慣性の法則ともよばれ、これが成り立つ座標系を慣性系という。互いに等速直線運動をする二つの座標系においては、力学の法則は同一である。このような慣性系は無限に多く存在し、それらが力学的に同等であることは、他の慣性系に対して特別な意味をもつ絶対基準系が存在しないことを意味する。これが、ニュートン力学(古典力学)におけるガリレイの相対性原理である。宇宙空間を高速で動く地表の構造物がなぜ安定に存在するかは説明を要するが、ガリレイの相対性原理はこれに対して論理的根拠を与えたのである。空間点の位置をxyz座標で記すK系とx'y'z'座標で記すK'系を二つの慣性系とする。この二つの系を関係づけるガリレイ変換は、たとえばK'がKx軸に沿って一定の速度Vで運動しているとき、同一の質点の位置座標の間で、
  x'=xVty'=yz'=z
と表される。この場合、時間経過は両方の慣性系で同じ、すなわち時間は変換で不変(t'=t)という絶対時間の仮定を置いている。

 Vの大きさが光速に比して無視できないくらいに大きくなると、前記の仮定は成り立たず、時間もまた変換を受ける。すなわち、ガリレイ変換は特殊相対性理論のローレンツ変換にとってかわられるべきものである。換言すれば、ガリレイ変換は、ローレンツ変換における相対速度Vが光速に比して非常に小さい極限として成り立つ。

[玉垣良三]

[参照項目] | 慣性系 | 相対性原理 | ローレンツ変換

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Galilee man

>>:  Galileo Galilei

Recommend

Hole Rolling - Anagata Atsue

…For example, when a circular cross section is to...

opus Dei (English spelling) opusDei

…Liturgy is called “Divine Service” because it is...

Kineya Sakujuro - Kineya Sakujuro

...Lyrics by Fujimoto Tobun. Music by the first K...

Acer rufinerve (English)

… [Ken Ogata]. . … *Some of the terminology that ...

Ten kinds of stone

A series of books from the end of the Edo period....

Akabane Bridge - Akabanebashi

...In the early modern period, the roads from Tor...

Matching the winner - Ichishoretsu

A term that abbreviates Honjyaku (the unity of Hon...

Saito Setsudo - Saito Setsudo

Year of death: July 15, 1865 (September 4, 1865) Y...

Dujiangyan - Park

A county-level city in central Sichuan Province, ...

Daizenshiki - Daizenshiki

An ancient central government office. Under the j...

Right Benkan Bureau - Ubenkankyoku

…At first, the ranks of Dai-gaiki were Shoshichi-...

Cryptochaetum grandicorne (English spelling)

…It does not refer to a specific insect, but is a...

Abhi - Abi

A transliteration of the Sanskrit word avisi. Eter...

Atalanta

...However, the mystery of the disappearance of t...

Vātsyāyana (English spelling)

A scholar of the Nyaya school, one of the orthodox...