When a square matrix A is equal to its adjoint matrix * A, that is, when A = * A, A is called a Hermitian matrix, named after the French mathematician Hermite. Here, an adjoint matrix is a matrix in which the complex numbers of the transposed matrix (a matrix in which the rows and columns are swapped) are replaced by their conjugate complex numbers. For example, a quadratic square matrix A real Hermitian matrix is nothing more than a symmetric matrix (a matrix in which the two elements symmetrically positioned about the diagonal are equal). The inner product of the linear space created by all n-th order column vectors C n Generally, a square matrix A that satisfies A * A = * AA is called a normal matrix. Hermitian matrices, along with unitary matrices (matrices that do not change the complex inner product), are important examples of normal matrices. In addition, a necessary and sufficient condition for a square matrix A to be a normal matrix is that there exists a unitary matrix U such that U -1 AU is a diagonal matrix (a matrix in which all components off the main diagonal are zero). Therefore, the Hermitian matrix A can make U -1 AU a diagonal matrix with the unitary matrix U. A Hermitian matrix may be defined as a normal matrix whose eigenvalues are all real numbers. In particular, Hermitian matrices are called positive-valued, semi-positive-valued, negative-valued, and semi-negative-valued Hermitian matrices according to whether their eigenvalues are all positive, non-negative, negative, or non-positive, respectively. For a Hermitian matrix A=(a ij ) i,j=1,……,n , [Tsuneo Kanno] [Reference] | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
正方行列Aがその随伴行列*Aに等しいとき、つまりA=*Aであるとき、フランスの数学者エルミートの名をとり、Aをエルミート行列という。ここで、随伴行列とは、転置行列(行と列とを入れ換えた行列)の成分の複素数を共役複素数に置き換えたものをいう。たとえば、二次正方行列 実エルミート行列は対称行列(主対角線に関して対称な位置にある二つの要素がそれぞれ等しい行列)にほかならない。 n次列ベクトル全体Cnのつくる線形空間の内積 一般にA*A=*AAを満たす正方行列Aを正規行列という。エルミート行列はユニタリー行列(複素内積を変えない行列)とともに正規行列の重要な例になっている。また、正方行列Aが正規行列であるための必要十分条件は、U-1AUが対角行列(主対角線外の成分がすべてゼロとなる行列)になるようなユニタリー行列Uがあることであるから、エルミート行列Aは、ユニタリー行列UでU-1AUを対角行列にすることができる。 エルミート行列は、固有値がすべて実数となる正規行列であると定義してもよい。とくに、エルミート行列の固有値がすべて正、非負、負、非正に従い、それぞれ、正値、半正値、負値、半負値エルミート行列という。エルミート行列A=(aij)i,j=1,……,nに対し、 [菅野恒雄] [参照項目] | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
…There are about 60 species distributed in Europe...
...The All Japan Championships (freestyle only) b...
One of the ryo-seikanshi (offices of officials). ...
A maki - e artist from the Momoyama period to the ...
A general term for books printed on a non-profit b...
This is a reorganization and expansion of the agri...
...There are 17 species in two genera, including ...
A minority group in northern Iraq. The origin of t...
… The Armadillo family is a distinctive animal of...
〘Noun〙① Small brushwood that grows in the mountain...
1523-1570 A military commander in the Sengoku per...
...In addition, due to the breadth of Kanezane...
[1][1] Buddhist term. Six types of Jizo Bodhisattv...
A full-length novel by British author Hardy. Publ...
During the Ritsuryo period, the Shozei (regular t...