Rotational motion - Rotational motion

Japanese: 回転運動 - かいてんうんどう
Rotational motion - Rotational motion

The motion of a mass or a set of masses, or a special rigid body, without changing its distance from a fixed point or axis of rotation or its relative positions. When considering rotational motion, it is sometimes convenient to consider a coordinate system that rotates relative to the inertial system. Such a coordinate system is called a rotating coordinate system. The concept of rest is not absolute. For example, to a person riding on a rotating merry-go-round, the surrounding scenery appears to be rotating. If we are only concerned with describing the state of motion, there is no decisive factor in determining whether the earth or the merry-go-round is at rest. In other words, all coordinate systems are kinematically equal. In addition to rotation around its own axle, such as the motion of planets around the sun, the rotation of the earth, and the motion of a top, there is also precession, in which the axle rotates around a vertical line, and a more complex rotation called nutation, which involves a change in the inclination of the axle.

In a rotating system, in addition to the forces given in an inertial system, the following three types of apparent forces (inertial forces) appear. (1) This force appears only when mr × the angular velocity vector ω changes with time, and has no special name. (2) 2 m ×ω Coriolis force. This force is perpendicular to both the velocity and the angular velocity vector in the rotating system of the mass point. (3) m ω × ( r × ω) centrifugal force. Its magnitude is m ρω 2 and its direction is the same as the direction of the rotation radius vector ρ. m is the mass of the mass point, r is the position vector of the mass point, the point above it is the first derivative of time (i.e. = dr / dt ), and × represents the vector product. If the rotation is uniform, = 0, so only forces (2) and (3) exist. If the mass point is stationary relative to the rotating system, force (2) disappears and only centrifugal force remains.

[Mitsuo Muraoka]

[Reference] | Centrifugal force | Coriolis force

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

質点または質点の集まり、もしくはその特別なものとしての剛体が、固定点ないしは回転軸から距離および相互の位置を変えずに行う運動のこと。回転運動を考えるとき、慣性系に対して回転する座標系を考えると便利な場合がある。このような座標系を回転座標系という。静止という概念は絶対的なものではない。たとえば回転しているメリーゴーラウンドに乗っている人にとっては周囲の風景のほうが回転しているように見える。運動のありさまを記述するということだけ考えるならば、大地とメリーゴーラウンドのどちらが静止しているかを決める決め手はない。いいかえれば、どのような座標系も運動学的には平等である。回転運動には、たとえば太陽の周りの惑星の運動や地球の自転、またこまの運動のように、それ自身の心棒の周りに自転しているほかに、その心棒が鉛直線の周りに回転する歳差運動、さらに心棒の傾きの変化を伴う章動とよばれる複雑な回転運動もある。

 回転系においては、慣性系において与えられた力のほかに次の3種類の見かけの力(慣性力)が現れる。(1)mr× 角速度ベクトルωが時間とともに変化する場合にのみ現れる力で、特別に名前はついていない。(2)2m×ω コリオリの力。質点の回転系における速度と角速度ベクトルの両方に垂直な力である。(3)mω×(r×ω) 遠心力。大きさはmρω2で方向は回転半径ベクトルρの向きに一致している。mは質点の質量、rは質点の位置ベクトル、その上の点は時間の第一微係数(すなわち=drdt)、×はベクトル積を表す。回転が一様ならば=0なので(2)および(3)の力だけとなる。質点が回転系に対して静止すれば(2)の力は消えて遠心力のみとなる。

[村岡光男]

[参照項目] | 遠心力 | コリオリの力

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Rotation period -

>>:  Rotation

Recommend

Pattuppattu (English spelling)

… [Masayuki Onishi] [Tamil Literature] The Dravid...

Sino-French War

A war fought between China and France from June 1...

Sea salt

〘 noun 〙 Table salt made from seawater. ⇔ Mountain...

Cavolinidae

…A general term for planktonic shellfish belongin...

Affricate

...A consonant without an aspirated sound is call...

Oradour‐sur‐Glane

A town in the Haute-Bienne department in central F...

Toshinori Kimura

...Also in 1901, Kodansha no Ehon appeared, which...

American teal - American teal

…The male's non-breeding plumage resembles th...

Mechanical and engineering processes

...The wide variation in yields and famines cause...

Syllabic writing

...There are also special uses of kanji, such as ...

Fukaya [city] - Fukaya

A city in northern Saitama Prefecture. It was inco...

Gastric biopsy

Biopsy is a method of taking a biopsy of the stom...

Glassy carbon

…Activated carbon is widely used as an adsorbent ...

Heidelberg Catechism - Heidelberg Catechism

A translation of the German Heidelberger Katechism...

Mr. Miyoshi

A clan known as a scholar in ancient and medieval...