Analytical Number Theory

Japanese: 解析的整数論 - かいせきてきせいすうろん
Analytical Number Theory

It is a field of study that applies analytical methods such as differential and integral calculus to number theory. Its origins lie in the German mathematician Dirichlet. For example, consider the sum of the reciprocals of all prime numbers.


Here, p is a variable that moves all the prime numbers. In fact, this series diverges. If there were only a finite number of prime numbers, the sum of their reciprocals would be a finite value, so the divergence of this series means that there are an infinite number of prime numbers. Pairs of prime numbers with a difference of 2, such as 11 and 13, or 17 and 19, are called twin primes. If we use q to represent the variable that moves the twin primes, then the series

converges. If it diverges, one would conclude that there are an infinite number of twin primes, but this is not the case. However, it can be said that in some sense the number of twin primes is quite small.

In this way, series have been applied to number theory and have produced many results. Among them, Dirichlet's arithmetic series theorem is famous and important. Consider an arithmetic series (arithmetic series) with a as the first term and d as the common difference.

a n =a+(n-1)d
If a and d are mutually prime, the sum of the reciprocals of prime numbers of the form a n always diverges. In other words, there are an infinite number of prime numbers in a n . This is called the Dirichlet arithmetic progression theorem. For example, if d is 10 and a is 1, there are an infinite number of prime numbers whose first digit is 1, such as 11, 31, 41, 61, ...

[Tsuneo Adachi]

Prime Number Theorem

The most typical application of function theory, and the most fundamental in analytical number theory, is the prime number theorem. Let π(x) denote the number of prime numbers that are not greater than a positive number x. For example, π(10)=4, π(100)=25, π(10 7 )=164579
The most crude theorem regarding the distribution of prime numbers is the one that asserts that π(2x)-π(x) ≥ 1 holds when x ≥ 2. In other words, there is always a prime number between x and 2x. Even a theorem of this level is not so easy to prove. When Gauss was 15 years old, he

That is,

He said he knew it was.


So the prime number theorem is

It is also said that the proof was given by Ch. de la Vallée-Poussin in 1896. There are other problems specific to analytical number theory, such as the Riemann Zeta function, which are still being studied today.

[Tsuneo Adachi]

[Reference] | Prime numbers

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

微分積分学をはじめとする解析的方法を整数論に適用する学問をいう。その創始はドイツの数学者ディリクレによる。たとえば、すべての素数の逆数の和を考えてみる。


ここにpはすべての素数を動く変数である。実はこの級数は発散する。かりに素数が有限個しかないとすれば、その逆数和は有限の値となるのだから、この級数の発散は素数が無限に存在することを意味する。11と13、17と19のように差が2の素数の組を双子素数(ふたごそすう)という。qでもって双子素数を動く変数を表すことにすると、級数

は収束する。これが発散すれば双子素数は無数にあることが結論されるが、それはいえない。ただ、ある意味で双子素数はかなり数が少ないことがいえる。

 このように級数が整数論に応用されて多大な成果をもたらす。なかでもディリクレの算術級数定理は有名で、また重要でもある。aを初項、dを公差とする等差級数(算術級数)を考える。

  an=a+(n-1)d
aとdとが互いに素であれば、anの形をした素数の逆数の和はつねに発散する。すなわちanのなかには無数に素数が存在する。これをディリクレの算術級数定理という。たとえばdを10としaを1とすると、11、31、41、61、……のように1桁(けた)目が1である素数が無数に存在する。

[足立恒雄]

素数定理

関数論の応用例としてもっとも典型的であり、しかも解析的整数論においてもっとも基本的なのが、素数定理である。正の数xを超えない素数の個数をπ(x)と表すことにする。たとえば
  π(10)=4, π(100)=25, π(107)=164579
である。素数の分布に関するもっとも荒っぽいのはπ(2x)-π(x)≧1がx≧2のとき成り立つことを主張する定理であろう。すなわち、xと2xの間にかならず素数が存在する。この程度の定理でも証明はそうやさしくはない。ガウスは15歳のころ、xが大きくなると

すなわち、

であることを知ったと述べている。


だから、素数定理は

とも述べられる。証明は1896年に至ってアダマールとド・ラ・バレ・プサンCh. de la Vallée-Poussinによって与えられた。そのほか、リーマンのゼータ関数など、解析的整数論固有の問題があって、現在も研究されている。

[足立恒雄]

[参照項目] | 素数

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Analytical mechanics

>>:  Analytic continuation

Recommend

Oreoica gutturalis (English spelling) Oreoicagutturalis

...Its beak is thick and short, and in English it...

Bundesfinanzhof

...The methods of handling cases and legal theori...

Saipan [island] - Saipan

A volcanic island in the Mariana Islands in the we...

Jun Takami

Novelist and poet. Born on February 18, 1907, in ...

Newspaper Law - Newspaper Law

This was the basic Japanese law for censoring spe...

Family property - Kasan

〘noun〙① Family property. Person's fortune . Pe...

Liver transplantation

A type of organ transplant. It refers to removing...

Iramomi - Iramomi

It is an evergreen coniferous tall tree of the Pi...

Saito Mankichi - Saito Mankichi

Year of death: September 2, 1914 Year of birth: Bu...

Hakuryuu - Hakuryuu

A Japanese offshore oil field drilling rig. It is ...

Urethane foam

A porous polyurethane that retains air bubbles ins...

Cuban Tody - Cuban Tody

...However, no species has been studied in detail...

great skua (English spelling) greatskua

...All three species are seen passing through the...

Three Examples of Metal and Stone

…Thus, as biographical material, they are fundame...

Shin Chae-ho

A Korean independence activist and historian who e...