Differential equation

Japanese: 微分方程式 - びぶんほうていしき(英語表記)differential equation
Differential equation

A differential equation is an equation that expresses the relationship between a variable x and its function y , including x , y , and their derivatives. Differential equations are divided into ordinary differential equations, which have one independent variable, and partial differential equations, which have two or more independent variables and include partial derivatives. Here, we will discuss the historical formation of the theory of differential equations.

Galileo was studying the motion of a falling body, and if the distance it falls in time t is x ( t ), then the acceleration x ″( t ) = g (constant)
We discovered that

is said to have been the first time a differential equation was solved. This was 50 years before Newton and Leibniz began their work on differential and integral calculus (around 1680). It was after Newton that differential equations were studied in earnest, and in the first half of the 18th century, special equations were solved using methods specific to each equation (quadrature method), but in the second half, solution methods using series came to be used. Around 1820, Cauchy emphasized the need to investigate the existence of solutions to differential equations, and theoretical research began, and further qualitative research into solutions to ordinary differential equations began with Poincaré's solution method using asymptotic series.

Partial differential equations did not appear until the middle of the 18th century. D'Alembert wrote that the equation for the vibration of a string stretched in the interval [0,1] on the x- axis is given by, where u ( t , x ) is the displacement at time t and location x.

The solution is u ( t , x )= f ( x - ct )+ g ( x + ct )
( f and g are arbitrary functions)
Furthermore, Bernoulli and others introduced the potential equation and the heat conduction equation, and Fourier successfully applied the Fourier series to solve the equation, which became the beginning of the Fourier series theory.

[Haruo Sunouchi]

Physical phenomena and differential equations

Almost all physical laws can be expressed in the form of differential equations. For example, the laws of motion are expressed as second-order differential equations of the coordinates of a material point with respect to time, and the laws of electromagnetic fields are expressed as first-order simultaneous partial differential equations of the electric and magnetic fields with respect to time and space, that is, Maxwell's equations. In order to quantitatively understand physical phenomena based on these laws, it is necessary to solve the differential equations that mathematically express the laws.

The general solution of a differential equation contains arbitrary constants or arbitrary functions. These arbitrary constants or functions can be determined by using the physical conditions of the physical phenomenon in question. Since Newton's laws of motion only give how velocity changes under the action of force, the solutions of the differential equations corresponding to the laws of motion contain solutions that correspond to various movements of position and velocity, even if the change in velocity is the same. This diversity of solutions is the two integral constants of the general solution. Therefore, the solution of a differential equation can only be uniquely determined by giving the position and velocity of a mass point at any time as physical conditions.

In many cases, the arbitrary functions contained in the general solution of partial differential equations are determined by giving the solution values ​​in a specific domain. A differential equation that is solved under such conditions is called a boundary value problem. In this case, the physical conditions are given by the function values ​​in a specific domain, i.e., the boundary values.

[Hajime Tanaka]

[Reference] | Boundary Value Problems | Ordinary Differential Equations | Partial Differential Equations

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

変数xと、その関数yとの関係を、xyやその導関数を含む方程式の形で表したものを微分方程式という。微分方程式は、独立変数が一つの常微分方程式と、独立変数が2個以上で偏導関数を含む偏微分方程式とに分けられる。ここでは、微分方程式の理論の歴史的形成について述べる。

 ガリレオが落体の運動を研究していて、時間tの間に落下する距離をx(t)とすると、加速度
  x″(t)=g(一定)
であることを発見し、その解

を得たのが、微分方程式が解かれた最初であるといわれている。これはニュートンやライプニッツの微分積分の始まる50年も前(1680ころ)である。微分方程式が本格的に研究されるのはニュートン以後で、まず18世紀前半は、特殊な方程式をそれ特有の方法で解いていた(求積法)が、後半には級数による解法が用いられるようになる。1820年ごろコーシーが、微分方程式の解の存在を調べる必要があることを強調して、理論的な研究が始まり、さらに、ポアンカレの漸近級数による解法などから、常微分方程式の解の定性的な研究が始まった。

 偏微分方程式は18世紀の中ごろまでは現れない。ダランベールが、x軸上の区間[0,1]に張られた弦の振動の方程式は、時間t、場所xにおける変位をu(t,x)とすると、

で表されることを示し、その解は
  u(t,x)=f(x-ct)+g(x+ct)
   (f,gは任意の関数)
となることを示している。さらに、ベルヌーイなどにより、ポテンシャルの方程式や熱伝導の方程式などが導入され、フーリエになって、フーリエ級数による解法が応用上成功し、フーリエ級数論の発端となった。

[洲之内治男]

物理現象と微分方程式

ほとんどすべての物理法則は、これを微分方程式の形に表現することができる。たとえば、運動の法則は、質点の座標の時間に関する二階微分方程式として表され、電磁場に関する法則は、電場と磁場の時間と空間に関する一階の連立偏微分方程式、すなわちマクスウェル方程式の形をとっている。これらの法則に基づいて物理現象を量的に理解するためには、法則を数学的に表現した微分方程式を解かなければならない。

 微分方程式の一般解は任意定数または任意関数を含んでいる。これらの任意定数または任意関数を決定するには、対象とする物理現象の物理的条件を用いればよい。ニュートンの運動の法則は、力の作用のもとで速度がどのように変化するかを与えているにすぎないため、運動法則に対応する微分方程式の解には、速度の変化が同じであっても位置や速度のさまざまな運動に対応するものが含まれている。この解の多様性が一般解の2個の積分定数である。したがって微分方程式の解は、任意の時刻の質点の位置や速度を物理条件として与えることによって初めて一義的に定まる。

 偏微分方程式の一般解に含まれている任意関数は、ある特定の領域における解の値を与えることによって定まる場合が多い。このような条件を与えられて解かれる微分方程式を境界値問題という。この場合、物理的条件は特定領域の関数値すなわち境界値によって与えられる。

[田中 一]

[参照項目] | 境界値問題 | 常微分方程式 | 偏微分方程式

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  House Committee on Un-American Activities

>>:  Pulverized coal

Recommend

Crying Stone - Yonakiishi

There is a legend that a rock cries every night. ...

Book club (English spelling)

An organization that selects and produces "go...

Kunitomi-so - Kudomi-no-sho

It was a large estate that covered the Miyazaki Pl...

Pil'nyak (English spelling) Boris Andreevich Pil'nyak

Russian and Soviet novelist. His real name was Vo...

Elagabalus

Ancient Roman Emperor (reigned 218-222). His real...

Kasuga (Tokyo)

…In the midst of the so-called Shie Incident in 1...

Carlton, Steve

Born December 22, 1944, in Miami, Florida. Full na...

Tottori Domain Genbun Uprising

A peasant uprising that occurred in the mid-Edo pe...

Jain Art

Jainism is a form of art created for religious ce...

Subliminal stimulation - Ikikashigeki

…Usually, it refers to the minimum strength of a ...

Air bearing

A bearing that uses air instead of an oil film as...

Gelae

...It is now a state. The name of the area comes ...

Arnubikshiki - Arnubikshiki

...Indian thinkers called speculation and insight...

Green turtle - Aoumigame (English spelling) green turtle

A large sea turtle of the order Testudins, family...

Ki and Sei parties - Kisei Ryōtō

They are descendants of the Ki and Kiyohara clans ...