This refers to cooling water that is heated and discharged in large quantities into the ocean. Warm wastewater is discharged from industrial facilities such as steel and chemical plants, but the largest source is the electric power industry, which accounts for three-quarters of all industries in the United States. In power generation systems that use steam turbines, the remaining steam energy, which is converted into mechanical energy by the turbine, is transferred to cooling water from outside by a heat exchanger called a condenser, and the steam is returned to water. This external cooling water can be river water, lake water, or seawater that is abundant nearby. The cooling water that passes through the condenser is usually heated by 7 to 8 degrees Celsius before being released into the environment, which causes thermal impacts on the environment and harmful effects on organisms living in natural water systems, resulting in the so-called warm wastewater problem. However, it is becoming clear that the impact on the ecosystem is proportional to the amount of water withdrawn, as will be described later, so it would be more accurate to call it the water withdrawal and warm wastewater problem. Nuclear power generation using light water reactors has low thermal efficiency, and two-thirds of the generated thermal energy is released into the environment as warm wastewater. Nuclear power generation using a light water reactor with an electric output of 1 million kilowatts requires 60 to 70 tons of cooling water per second, which is 1.5 times that required for coal- or oil-fired power generation. In the accident at the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, which occurred during the Great East Japan Earthquake in March 2011, the pumps that pumped seawater for cooling were hit by the tsunami and lost their function, making it impossible to finally release the generated heat into the sea as warm wastewater (final heat sink problem), which was one of the causes of the core meltdown. In this way, warm wastewater plays an important role in controlling the temperature of the nuclear reactor and ensuring safety. Due to geographical conditions in Japan, such as the lack of large rivers and a long coastline, almost all condenser cooling water is dependent on seawater. On the other hand, fishing rights have been established along almost the entire coastline, and in areas where shallow-sea fishing is particularly thriving, it is natural that there is anxiety about changes to the marine ecosystem caused by the release of heated wastewater and the adverse effects of water intake. This has been the cause of social conflicts between fishermen and the siting of nuclear power plants. Investigations into the extent of the impact of warm wastewater are being conducted, including devising an experimental formula to predict the range of diffusion of warm wastewater, observations using infrared imaging cameras mounted on helicopters, and direct temperature measurements using research vessels, but it is said to be difficult to detect temperature changes of less than 2 degrees Celsius from the ambient water temperature. Fish eggs, larvae, plankton, etc. in the external cooling water passing through the condenser at high speed are almost completely destroyed by mechanical and thermal shocks and chemical effects such as injected chlorine. Therefore, in order to reduce the impact on the ecosystem, it is desirable to limit the amount of water taken in and to use it in a circulating manner. In addition to deep water intake and discharge, bypass dilution, and other engineered water intake and discharge measures, there are methods of discharging heat into the atmosphere using cooling ponds, waterways, cooling towers, etc., but these are not used at all in Japan. [Atsunosuke Nakajima and Jun Tateno September 15, 2015] [References] | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
温められて海などに大量に排出される冷却水のこと。温排水は製鉄、化学などの産業施設から排出されるが、電力産業が最大で、アメリカでは全産業の4分の3を占めている。蒸気タービンを用いる発電方式では、タービンで機械的エネルギーに変換された残りの蒸気のエネルギーは、復水器とよばれる熱交換器によって外部からの冷却水に移され、蒸気は水に戻る。この外部冷却水としては、近くに大量に存在する河川水、湖水、海水などが用いられる。復水器を通った冷却水は、通常7~8℃昇温して環境に放出されるために、環境への熱影響や、自然水系中にすむ生物への有害な影響の原因となり、いわゆる温排水問題が生ずる。しかし、生態系に及ぼす影響は後述するように取水量の大きさに比例することが明らかとなりつつあるので、正確には取水・温排水問題とよぶべきであろう。 軽水炉による原子力発電は熱効率が低く、発生する熱エネルギーの3分の2は温排水として環境に放熱される。電気出力100万キロワットの軽水炉による原子力発電では、1秒間当り60~70トンの冷却水が必要で、これは石炭・石油火力の場合の1.5倍に相当する。2011年(平成23)3月の東日本大震災の際に発生した東京電力福島第一原子力発電所事故では、冷却用の海水をくみ上げるポンプが津波をかぶって機能を失い、発生する熱を最終的に温排水として海に放出することができなくなり(最終ヒートシンク問題)、これが炉心溶融の一因となった。このように温排水は、原子炉の温度を制御して安全を確保するうえでも重要な位置づけにある。 日本には大きな河川がなく、また海岸線が長いといった地理的条件から、復水器冷却水のほぼ全量を海水に依存している。一方、ほぼ沿岸全域に漁業権が設定されており、とくに浅海漁業の盛んな地域では、温排水放出に伴う海洋生物の生態系変化や、取水による悪影響などに対して不安が生ずるのは当然で、このことが原子力発電所立地に際して漁業者との間に社会的紛争を生ずる原因となってきた。 温排水の拡散範囲を予測するための実験式の案出や、ヘリコプター搭載の赤外線イメージカメラによる観測、調査船による直接測温など、温排水の影響範囲の調査が行われているが、環境水温との差が2℃以下の温度変化の検出はむずかしいとされている。 復水器を高速で通過する外部冷却水中の魚卵、幼生、プランクトンなどは、機械的、熱的ショックおよび注入塩素などの化学作用によりほとんど全滅する。そのため生態系への影響を小さくするには、取水量を制限して、循環使用することが望ましい。深層取水および放水、バイパス希釈その他の工学的取放水対策以外の冷却用池、水路、冷却塔などによる大気への排熱方式があるが、日本ではまったく行われていない。 [中島篤之助・舘野 淳 2015年9月15日] [参照項目] | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
… [Okamoto Motoji]. … *Some of the terminology th...
…Reddish brown stones are called sardines, whethe...
A daily newspaper published in Tokyo before World...
This is a public register that records the enroll...
...The "New Covenant" is the word of th...
She was the daughter of Katsuragi no Sotsuhiko, t...
...The individual tree trunks that make up a foss...
...The molecule has the shape shown in the figure...
It was originally given as a translation of the Ge...
Born: May 29, 1673, Middelburg Died April 16, 1743...
...They are the attendants of Yakushi Nyorai and ...
A study of language diversity in various aspects, ...
A masterpiece by British poet A. Tennyson. Produce...
... In Portugal, the Monastery-Church of Our Lady...
…It is also called shovelboard. It is a game that...