The integrals that usually appear in calculus textbooks are called Riemann integrals, and although the definition is simple, they have some shortcomings. For example, even if an integrable sequence of functions {f n (x)} converges to f(x) at each point x, f(x) may not be integrable, or In his doctoral thesis of 1902, Lebesgue constructed an integral that eliminates these shortcomings and yet gives the same integral value for all Riemann integrable functions. This is called the Lebesgue integral, and is an essential part of the foundations of modern analysis. However, the method of constructing the Lebesgue integral is somewhat complicated, and there are various styles of improving it, but they all result in the same integral. Abstractly, consider a measure space (X,M,m), i.e., a family M of subsets of a set X, where a measure m(E) is defined for a set E∈M, and this measure is completely additive. The sets that are elements of M are called measurable sets. A real-valued function f(x) on X is a set {x∈X;f(x)>α}∈M (a measurable set) for any real number α. Some typical properties of the Lebesgue integral are: (2) If {f n (x)} ⊂ L 1 (X,M,m), f n (x) → f(x), and |f n (x)|≦g(x)∈L 1 (X,M,m), then f(x)∈L 1 (X,M,m), and (3) If f(x,y)∈L 1 (X,M,m) is a function of two variables, then the multiple integral becomes a repeated integral, In this way, the Lebesgue integral created a function space that is useful for functional analysis (defining the norm of a Riemann integrable function using the formula (*) does not make it complete). [Haruo Sunouchi] ``Introduction to Lebesgue Integral'' by Seizo Ito (1963, Shokabo) ▽ ``Introduction to Lebesgue Integral'' by Haruo Sunouchi (1974, Uchida Rokakupa)'' [Reference] |©Shogakukan "> Lebesgue integral Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
普通、微積分学の教科書に出てくる積分はリーマン積分とよばれるもので、定義は簡単であるが、いくつかの欠点をもっている。たとえば、積分可能な関数列{fn(x)}が、各点xでf(x)に収束しても、f(x)が積分可能でなかったり、 ルベーグは1902年の学位論文で、これらの欠点を除き、しかも、リーマン積分可能な関数の積分の値は同じになるような積分を構成した。これがルベーグ積分とよばれているもので、近代解析学の基礎として不可欠のものとなっている。ただし、ルベーグ積分の構成法はやや複雑であり、いろいろ改良した流儀があるが、いずれも同じ積分に帰着する。 抽象的に、測度空間(X,M,m)を考える。すなわち、集合Xの部分集合の族Mで、集合E∈Mには測度m(E)が定義され、これが完全加法的な測度になっているとする。このときMの要素である集合を可測集合という。 X上の実数値関数f(x)が、任意の実数αに対し、集合 ルベーグ積分の代表的な特性をいくつかあげると、 (2){fn(x)}⊂L1(X,M,m),fn(x)→f(x)、しかも|fn(x)|≦g(x)∈L1(X,M,m)ならばf(x)∈L1(X,M,m)となり、 (3)二変数の関数f(x,y)∈L1(X,M,m)ならば、重積分は繰り返し積分となり、 このように、ルベーグ積分によって関数解析に役だつ関数空間がつくられた(リーマン積分可能な関数に、リーマン積分により、式(*)でノルムを定義しても完備にはならない)。 [洲之内治男] 『伊藤清三著『ルベーグ積分入門』(1963・裳華房)』▽『洲之内治男著『ルベーグ積分入門』(1974・内田老鶴圃)』 [参照項目] |©Shogakukan"> ルベーグ積分 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Rubeshibe [town] - Rubeshibe
Inflammation of biological tissues is classified ...
…An aromatic gum resin obtained from the Boswelli...
…In the past, the common mantis shrimp F. pintade...
…These plans, which are implemented to efficientl...
Theater critic. Born in Shichikencho, Shita-ya, T...
The last emperor of the Inca Empire. Illegitimate...
A tool for making ink for calligraphy. It is the ...
A type of parasitic insect louse that infests huma...
…As telephones became more widespread and more co...
…The law that "bad money drives out good.&qu...
〘 noun 〙 A monument commemorating those who died f...
...It is also called quasi-Chinese, Japanese-Chin...
A region consisting of a peninsula that juts out ...
A term for labor duties seen from the Heian perio...
This hot spring is located at the western foot of ...