A point mass of mass m moving with a velocity v has (1/2) mv2 more energy than if it were stationary in the same position. This energy is called kinetic energy ( ). The kinetic energy of a collection of mass points, i.e., a mass system, is the sum of the kinetic energies of each mass point. In this case, it can be divided into two terms: the kinetic energy of the center of mass of the mass system, and the mass energy of relative motion within the mass system. In the case of an object with an extension, the kinetic energy of the object with an extension can be found by dividing the object into infinitesimal parts of mass Δ m and taking the sum of the kinetic energies (1/2) Δ mv 2 of each part. In this case, the velocity v is generally different for each part of the object. If the object can be considered as a rigid body, the motion of the entire object can be expressed as the motion of the center of mass and the rotational motion of the object around a fixed axis passing through the center of mass. The direction of the axis of rotation of an object generally changes from moment to moment. If the speed of rotation of a rigid body around the axis of rotation at each moment, i.e., the angular velocity, is ω, the total mass of the rigid body is M , and the velocity of the center of mass is v , then its kinetic energy is When a rigid body rotates around a fixed axis with angular velocity ω as shown in [Hajime Tanaka] [Reference] | |©Shogakukan "> Kinetic Energy (Figure A) ©Shogakukan "> Kinetic energy (rotation of a rigid body) [Figure B] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
速度vで運動している質量mの質点は、同じ位置で静止しているときよりも(1/2)mv2だけエネルギーを多く有している。このエネルギーを運動エネルギーという( )。 質点の集まり、すなわち質点系の運動エネルギーは、各質点の運動エネルギーの和になる。この場合、質点系の質量中心の運動エネルギーと質点系内の相対運動の質点エネルギーとの二つの項に分けることができる。広がりをもつ物体の場合には、物体を質量Δmの微小な部分に分け、各部分の運動エネルギー(1/2)Δmv2の総和をとれば、広がりをもつ物体の運動エネルギーを求めることができる。この場合、速度vは一般に物体の各部分ごとに異なる。物体が剛体とみなしてよい場合には、物体全体の運動を質量中心の運動と、質量中心を通る一つの決まった軸の周りの物体の回転運動とで表すことができる。物体の回転軸の方向は一般に時々刻々変化している。各瞬間における回転軸の周りの剛体の回転の速さ、すなわち角速度をω、剛体の全質量をM、質量中心の速度をvとすれば、その運動エネルギーは 剛体が [田中 一] [参照項目] | |©Shogakukan"> 運動エネルギー〔図A〕 ©Shogakukan"> 運動エネルギー(剛体の回転)〔図B〕 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
…(2) Xiphosura: Horseshoe crabs with only two gen...
This is a settlement with a strong town character...
Calderas are formed when the roof of a magma chamb...
…The Japanese maple and the large maple are also ...
Tolima is the capital of the state of Tolima in ce...
…the common name for the General Allotment Act, p...
…Alexander largely followed the old system, activ...
〘noun〙① Another world. A world to which one does n...
...Hydraulically, the lake is called Chud-Pskov L...
1568-1655 Azuchi-Toyotomi: A samurai from the ear...
A phenomenon in which many meteorites fall at the ...
A perennial plant of the Amaryllidaceae family, al...
〘 noun 〙 A person who kidnaps people. A person who...
An organization formed by mid-ranking officers of...
1. A slang term for Americans. Originally used in ...