Kinetic energy

Japanese: 運動エネルギー - うんどうえねるぎー
Kinetic energy

A point mass of mass m moving with a velocity v has (1/2) mv2 more energy than if it were stationary in the same position. This energy is called kinetic energy ( Figure A ).

The kinetic energy of a collection of mass points, i.e., a mass system, is the sum of the kinetic energies of each mass point. In this case, it can be divided into two terms: the kinetic energy of the center of mass of the mass system, and the mass energy of relative motion within the mass system. In the case of an object with an extension, the kinetic energy of the object with an extension can be found by dividing the object into infinitesimal parts of mass Δ m and taking the sum of the kinetic energies (1/2) Δ mv 2 of each part. In this case, the velocity v is generally different for each part of the object. If the object can be considered as a rigid body, the motion of the entire object can be expressed as the motion of the center of mass and the rotational motion of the object around a fixed axis passing through the center of mass. The direction of the axis of rotation of an object generally changes from moment to moment. If the speed of rotation of a rigid body around the axis of rotation at each moment, i.e., the angular velocity, is ω, the total mass of the rigid body is M , and the velocity of the center of mass is v , then its kinetic energy is

I 0 is a quantity determined by the density distribution of the rigid body and the direction of the axis of rotation passing through the center of mass at this moment, and is called the moment of inertia. This expression is obtained by adding up the kinetic energy of each part of the rigid body.

When a rigid body rotates around a fixed axis with angular velocity ω as shown in Figure B , its kinetic energy is the sum of the energy of the rotational motion of the center of mass around the fixed axis and the energy of the rotational motion of the rigid body around the axis passing through the center of mass. The angular velocity of both rotations is equal to ω, and the axis of rotation passing through the center of mass is parallel to the fixed axis. If the velocity of the center of mass is v and the distance between the center of mass and the fixed axis is R , then v = R ω, and the energy T of the rotational motion is

I = I 0 + MR 2 is the moment of inertia around the axis of rotation, and using this, the kinetic energy is

In the theory of relativity, when a mass point with rest mass m 0 has a velocity v relative to an inertial system, its total energy is

where c is the speed of light. Therefore, the kinetic energy in this case is the total energy minus the rest energy m 0 c 2 , which does not depend on the speed.

When v is small compared to c , this value is approximately equal to the kinetic energy in the non-relativistic case, 1/2 m 0 v 2 .

[Hajime Tanaka]

[Reference] | Rigid body | Mass point
Kinetic Energy (Figure A)
©Shogakukan ">

Kinetic Energy (Figure A)

Kinetic energy (rotation of a rigid body) [Figure B]
©Shogakukan ">

Kinetic energy (rotation of a rigid body) [Figure B]


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

速度vで運動している質量mの質点は、同じ位置で静止しているときよりも(1/2)mv2だけエネルギーを多く有している。このエネルギーを運動エネルギーという(図A)。

 質点の集まり、すなわち質点系の運動エネルギーは、各質点の運動エネルギーの和になる。この場合、質点系の質量中心の運動エネルギーと質点系内の相対運動の質点エネルギーとの二つの項に分けることができる。広がりをもつ物体の場合には、物体を質量Δmの微小な部分に分け、各部分の運動エネルギー(1/2)Δmv2の総和をとれば、広がりをもつ物体の運動エネルギーを求めることができる。この場合、速度vは一般に物体の各部分ごとに異なる。物体が剛体とみなしてよい場合には、物体全体の運動を質量中心の運動と、質量中心を通る一つの決まった軸の周りの物体の回転運動とで表すことができる。物体の回転軸の方向は一般に時々刻々変化している。各瞬間における回転軸の周りの剛体の回転の速さ、すなわち角速度をω、剛体の全質量をM、質量中心の速度をvとすれば、その運動エネルギーは

となる。I0は、剛体の密度分布とこの瞬間の質量中心を通る回転軸の方向とで定まる量で、慣性モーメントという。この表式は剛体の各部分の運動エネルギーを総和して得られる。

 剛体が図Bのように一つの固定した軸の周りを角速度ωで回転しているとき、その運動エネルギーは、固定軸の周りの質量中心の回転運動のエネルギーと、質量中心を通る軸の周りの剛体の回転運動のエネルギーとの和になる。両方の回転とも角速度はωに等しく、質量中心を通る回転軸は固定軸に平行である。質量中心の速度をv、質量中心と固定軸の距離をRとすると、v=Rωであり、回転運動のエネルギーT

となる。I=I0+MR2は回転軸の周りの慣性モーメントであって、これを用いると運動エネルギーは

となる。相対性理論では、静止質量m0の質点が慣性系に対してvの速度を有するとき、その全エネルギーは

となる。cは光の速さである。したがって、この場合の運動エネルギーは、全エネルギーから速度によらない静止エネルギーm0c2を除いた

となる。vcに比べて小さいときには、この値はほぼ(1/2)m0v2という非相対論的な場合の運動エネルギーに等しくなる。

[田中 一]

[参照項目] | 剛体 | 質点
運動エネルギー〔図A〕
©Shogakukan">

運動エネルギー〔図A〕

運動エネルギー(剛体の回転)〔図B〕
©Shogakukan">

運動エネルギー(剛体の回転)〔図B〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Sports day - Sports day

>>:  Exercise - Sports

Recommend

Merostomata

…(2) Xiphosura: Horseshoe crabs with only two gen...

Taniguchi Village

This is a settlement with a strong town character...

Collapse caldera - Kambotsu caldera (English name) collapse caldera

Calderas are formed when the roof of a magma chamb...

Fullmoon maple (English spelling)

…The Japanese maple and the large maple are also ...

Ibagué (English spelling)

Tolima is the capital of the state of Tolima in ce...

Indian General Allotment Act

…the common name for the General Allotment Act, p...

Kleitos

…Alexander largely followed the old system, activ...

Otherworld - Takai

〘noun〙① Another world. A world to which one does n...

Peipsi

...Hydraulically, the lake is called Chud-Pskov L...

Sagara Seibei

1568-1655 Azuchi-Toyotomi: A samurai from the ear...

Meteorite shower

A phenomenon in which many meteorites fall at the ...

Higanbana (red spider lily) - Lycoris radiata

A perennial plant of the Amaryllidaceae family, al...

Convict - convict

〘 noun 〙 A person who kidnaps people. A person who...

Sakurakai - Sakurakai

An organization formed by mid-ranking officers of...

Yankee (English spelling)

1. A slang term for Americans. Originally used in ...