Law of cosines

Japanese: 余弦定理 - よげんていり(英語表記)law of cosines
Law of cosines
A theorem on the relationship between the lengths of the sides and the cosines (trigonometric functions) of the interior angles of a plane triangle. In a triangle ABC, if the lengths of the sides are a = BC, b = CA, c = AB, and α = ∠CAB, the cosine theorem states that

a 2 = b 2 + c 2 −2 b c cosα

It can be expressed as follows. In particular, when α is a right angle , cosα=0, so we obtain the Pythagorean theorem (Pythagorean theorem) a2b2c2 as a special case of the cosine theorem. The cosine theorem makes it possible to find the cosine of an interior angle of a triangle when the lengths of three sides are given, and when the lengths of two sides and the cosine of the angle they form are given, the length of the remaining side can be found. Triangles on a sphere can be written as follows: The cosine theorem for a triangle enclosed by the arc of a great circle on a sphere is given by taking the radius of the sphere to be 1 and using the same symbols as for triangles on a plane, as follows:

cos a = cos b cos c + sin b sin c cosα

(→ spherical geometry).

Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information

Japanese:
平面上の三角形において,辺の長さと内角の余弦(コサイン。→三角関数)の間に成り立つ関係の定理。三角形 ABCにおいて,各辺の長さを a=BC,b=CA,c=AB,またα=∠CAB としたとき,余弦定理は,

a2b2c2-2bc cosα

と表される。特にαが直角のときは cosα=0 となるので,余弦定理の特別な場合としてピタゴラスの定理(三平方の定理)a2b2c2が得られる。余弦定理により,3辺の長さが与えられた三角形の内角の余弦を求めることができ,2辺の長さとそのなす角の余弦が与えられると,もう一つの辺の長さを求めることができる。また,球面上の三角形については次のように記述される。球面上の大円の弧で囲まれた三角形についての余弦定理は,球の半径を 1とおき,平面上の三角形と同じ記号を用いると,

cosa=cosb cosc+sinb sinc cosα

と表される(→球面幾何学)。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

<<:  Prognosis - Yogo (English spelling)

>>:  Prophets

Recommend

Pronolagus

…General term for mammals of the Palaeolaginae su...

Aginashi - Aginashi

A perennial plant of the Albataceae family (APG c...

Okapi - Okapi (English spelling)

An animal of the order Artiodactyla, class Mammal...

Acta Sanctorum (lives of saints)

Documents that record the words, deeds, and lives ...

Petrus [of Alcantara] (English spelling)

1499‐1562 Spanish Franciscan and a leading figure ...

remain

…There is no knock-on or throw-forward, and the g...

Dutch Broadcasting Corporation - Dutch Broadcasting Corporation

...It was founded as a city in 1424, and was not ...

Fringillidae

…They sing lively before the spring migration. Th...

Italian stone pine (English spelling) Italianstonepine

... P . radiata D. Don (Monterey pine), which gro...

Niš (English spelling)

A city in southeastern Serbia. It is located near ...

Pierre Samuel Dupont de Nemours

1739‐1817 French economist and politician. He init...

Atsugi Air Base

…In 1941, the Naval Arsenal and Naval Air Corps w...

Mechanics - Kikaigaku

…Instead, kinetics was used to mean dynamics. The...

Prayer master - Kitōshi

...Those who perform both of these tasks are moun...

His, W. (English spelling) HisW

…A groove, the sulcus limitans, runs from posteri...