The retina is the innermost membrane of the eyeball wall, and is equivalent to the film (photosensitive membrane) if the human eye were a camera. In other words, light rays that pass through the cornea, the pupil, and the lens and vitreous humor form an image on the retina, and our perception of the object we see begins. However, the retina is a photosensitive membrane with a structure and function that is incomparable to film, and is made up of a complex intertwining of nerve cells such as photoreceptors, bipolar cells, and ganglion cells. The thickness of the retina varies from place to place, but on average it is a transparent membrane with a thickness of about 0.2 mm. The sensory cells that are the center of the photosensitive membrane, i.e. the photoreceptor cells that sense light, are located at the very back of the membrane in terms of the progression of light. The sensitivity of the retina changes depending on the brightness of the surroundings, increasing in sensitivity in dark places and decreasing in sensitivity in bright places. In this respect, it is more similar to the image pickup tube of a television camera than to film. However, while image pickup tubes need to switch their sensitivity depending on the brightness, the sensitivity of the retina changes automatically and continuously, making it even more sophisticated than image pickup tubes. Also, if we compare the range of change in the photosensitivity of the retina with the sensitivity of film, it works as a film with an ISO of about 50 in bright places, but in the dim light of the evening it works as a film with an ISO of about 400, and in pitch black it works as a film with an ISO of 5000 at its highest sensitivity. Another difference between the retina and film is that the resolution of the retina varies depending on the part of the retina. In other words, the resolution is very sharp in the macula at the center of the retina, and the resolution drops rapidly away from the center. A visual acuity of 1.2 or 1.5 refers to this central resolution. There are two types of photoreceptor cells mentioned above, cones and rods. Cones are related to sharp eyesight and color sensation, while rods are related to increased sensitivity in dark places. Therefore, the difference in visual acuity depending on the area is related to the distribution density of these cones. In other words, only cones are present in the center of the macula, where visual acuity is the sharpest, and the density of cones decreases as you move away from this point. There are about 7 million cones in the retina, and more than 100 million rods. In contrast, there are about 1 million nerve fibers in the optic nerve that transmit information received by the retina to the cerebrum. Therefore, one cone cell in the center of the retina is connected to one nerve fiber, but as you move away from the center, many photoreceptor cells form a single functional unit and are connected to one nerve fiber. This is also related to the excellent resolution of the center of the retina. When an image of the outside world is reflected on the retina and stimulates the photoreceptor cells, an electrical signal (pulse) is sent from the cells to the optic nerve. If we compare the process by which an image is reflected on the retina and the stimulus is transmitted to the cerebrum through the optic nerve with the process by which an image is captured by a television camera and recorded on videotape, we can better understand how information is transmitted from the eye. In other words, information is converted into an electrical signal beyond the optic nerve and then transported, which is very similar to the process by which an image reflected on a television camera's image tube is converted into an electrical signal and recorded on videotape. In addition, because there are connections between nerve cells within the retina, it can also be said that image information is processed in the retina before the signal is sent to the optic nerve. When observing the retina with an ophthalmoscope, the transparent retina appears orange-red due to the color of the retinal pigment epithelium and choroid behind it. In addition, blood vessels running through the transparent retina, the macula, which is the center of the retina, and the optic disc, where the optic nerve exits, can be seen. [Mizuo Matsui] Retinal DisordersVarious diseases can occur in the retina. There are many diseases of the retina itself, such as retinal vascular disease, retinal inflammation, and retinal detachment, but various changes occur mainly in the retinal blood vessels when you have a systemic disease such as high blood pressure or diabetes. In the past, retinal inflammatory diseases were collectively called retinitis, but with advances in ophthalmic pathology, retinitis is being renamed retinopathy or retinal degeneration, or a disease name indicating the cause. For example, diabetic retinitis has been renamed diabetic retinopathy (diabetic retinopathy), and retinitis pigmentosa has been renamed retinitis pigmentosa. In addition, the traditional retinitis is now considered to be a part of uveitis. [Mizuo Matsui] [Reference items] | | | | | | | |©Shogakukan "> Eye structure ©Shogakukan "> Horizontal cross section of the eyeball ©Shogakukan "> Retina structure Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
眼球壁のもっとも内側の膜で、人間の目をカメラに例えたとき、フィルム(感光膜)に相当するものが網膜である。すなわち、角膜を通り瞳孔(どうこう)(ひとみ)を通過して水晶体と硝子体(しょうしたい)を通った光線は、網膜へ像を結ぶことによって見る対象の知覚が始まる。しかし、網膜はフィルムとは比較にならないほど精巧な構造と働きをもった感光膜であり、視細胞のほか、双極細胞、神経節細胞などの神経細胞が複雑に絡み合ってできている。 網膜は場所によって厚さが違うが、平均すると約0.2ミリメートルの厚さをもった透明な膜である。実際に感光膜としての働きの中心になる感覚細胞、すなわち光を感ずる視細胞は、光の進行からみると膜のいちばん奥に位置している。網膜の感光度は周囲の明るさに応じて変化し、暗いところでは感度が上がり、明るいところでは感度が下がる。この点ではフィルムよりもテレビカメラの撮像管に似ている。しかし、撮像管は明暗に応じて感度を切り替える必要があるが、網膜の感度は無段階に自動的に変化するので、撮像管よりさらに精巧である。また、網膜のこの感光度の変化の幅をフィルムの感度と比較してみると、明るいところでISO(イソ)50ぐらいのフィルムとして働いているが、夕方の薄暗いところではISO400ぐらい、真っ暗なところで感度がもっとも上がるとISO5000のフィルムに相当するようになる。さらに網膜がフィルムと違う点は、網膜が部位によって解像力を異にするということである。すなわち、網膜の中心の黄斑(おうはん)では解像力が非常に鋭く、中心を離れると解像力が急速に落ちていく。1.2とか1.5という視力は、この中心部の解像力である。 前述の視細胞には錐体(すいたい)と桿体(かんたい)との2種類があり、鋭い視力や色の感覚と関係があるのは錐体で、暗いところで感度が上がることと関係のあるのが桿体である。したがって、部位によって視力が違うのは、この錐体の分布密度と関係している。すなわち、視力のもっとも鋭い黄斑の中心部には錐体だけが存在し、ここから離れるにしたがって錐体の密度は低くなっていく。また、網膜にある錐体の数は約700万個、桿体の数は1億個以上である。これに対し、網膜で受け取られた情報を大脳へ伝える視神経の神経線維の数は約100万本である。したがって、網膜の中心部の錐体は一つの細胞と1本の神経線維が連絡しているが、中心から離れるにつれて数多くの視細胞が一つの働きのうえの単位をつくって1本の神経線維と連絡している。このことも、網膜の中心の解像力が優れていることと関係がある。 網膜に外界の像が写り視細胞が刺激されると、細胞から電気信号(パルス)が視神経へ送られる。網膜の像が写って視神経を通って大脳へ刺激が伝わる過程を、テレビカメラで像を撮ってビデオテープに記録する過程と比較すると、目からの情報の伝わり方がよくわかる。すなわち、視神経から先では情報が電気信号に変換されて運ばれるわけで、これはテレビカメラの撮像管に写った像が電気信号に変換されてビデオテープに記録される過程によく似ている。また、網膜の中でも神経細胞どうしの連絡があるので、これも視神経へ信号が送られる前に網膜の中で画像情報処理が行われているということができる。 網膜を検眼鏡で観察すると、網膜は透明なので、その奥にある網膜色素上皮層と脈絡膜との色調によって橙赤(とうせき)色に見える。さらに、透明な網膜の中を走る血管、網膜の中心部である黄斑、視神経の出口である視神経乳頭が認められる。 [松井瑞夫] 網膜の疾患網膜にも種々な疾患が発生する。網膜血管病、網膜の炎症、網膜剥離(はくり)など網膜自体の疾患も多いが、高血圧や糖尿病などの全身疾患のときに網膜の血管を中心にいろいろな変化が現れる。 なお、かつて網膜の炎症性疾患を網膜炎と総称していたが、眼病理学の進歩とともに網膜炎を網膜症または網膜変性症、あるいは病因を示す疾患名に改められつつある。たとえば、糖尿病性網膜炎を糖尿病性網膜症(糖尿病網膜症)、色素性網膜炎を網膜色素変性症と改称したのも一例である。また、従来の網膜炎はぶどう膜炎の一部とみられるようになっている。 [松井瑞夫] [参照項目] | | | | | | | |©Shogakukan"> 目の構造 ©Shogakukan"> 眼球の水平断面図 ©Shogakukan"> 網膜の構造 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Demodex mange - Demodex mange
German Social Democratic politician. Born the son...
… [Wing classification and characteristics] An ai...
A city in the southeastern part of Iwate Prefectur...
A perennial herb of the Convolvulaceae family, wid...
…Also known as the Indian marsh deer or marsh dee...
1922?-89 A Cuban pianist and bandleader, nicknamed...
〘Noun〙 A type of horse equipment. An ornament for ...
Seawater infiltrates the estuaries of rivers where...
A method of receiving radio waves. The received hi...
1855‐1925 A progressive politician who represented...
Born: 4 December 1585, Derby Died: December 23, 16...
Located in Kamigyo Ward, Kyoto City, this temple w...
A general term for enzymes that hydrolyze polysac...
...However, the majority of the remains date from...
…Legendary Assyrian king. He is sometimes identif...