In three-dimensional space, given a surface x = x(u,v), y = y(u,v), z = z(u,v), consider integrating a continuous function f(x,y,z) defined in a region D in the space that contains this surface on this surface. Now, when u and v move through a certain region M in the u-v plane, a corresponding portion S M on the surface is drawn. If M is divided into a fine mesh (as when considering the area on a plane), and the corresponding small portion S k on the surface is taken as well as a point P k within S k , and Σf(P k )S k is considered, then as the mesh is uniformly refined, it will converge to a certain limit value. This value is called the surface integral of f(x,y,z) on the surface S M , and is given by [Osamu Takenouchi] Gauss's rule Suppose we have a C1 function (a function with continuous partial derivatives) f(x,y,z) in a bounded region D in space. Consider a subregion V in D that is enclosed by a closed surface S. This corresponds to Green's formula for line integrals, and is important in the calculation of multiple integrals. Stokes' theorem is also well-known and often used. [Osamu Takenouchi] [Reference] |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
三次元空間において、曲面x=x(u,v),y=y(u,v),z=z(u,v)が与えられたとして、この曲面を含む空間内の一つの領域Dにおいて定義された連続関数f(x,y,z)があるとき、これをこの曲面上で積分することを考える。 いま、u、vがu‐v平面内のある領域Mを動くとき、対応して曲面上の部分SMが描かれるものとする。Mを細かい網目(あみめ)に分割し(平面上の面積を考えたときのように)、対応して得られる曲面上の小部分Skと、Sk内の一点Pkをとって、Σf(Pk)Skを考えると、これは網目を一様に細かくしていくとき、ある極限値に収束する。この値をf(x,y,z)の曲面SM上における面積分といって、 [竹之内脩] ガウスの定理空間内の有界な領域DでC1級関数(連続な偏導関数を有する関数)f(x,y,z)が与えられているとする。D内に、閉曲面Sによって囲まれた部分領域Vを考えるとき、 これは、線積分の場合のグリーンの公式に対応するものであり、重積分の計算において重要である。また、ストークスの定理とよばれる定理も著名でよく用いられる。 [竹之内脩] [参照項目] |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
…The Thirteen Classics Commentaries, the Shuowen ...
...The flesh is too watery to be eaten. The Alepo...
Year of death: April 6, 1889 Year of birth: Bunsei...
... a general term for machines that make fibers ...
A religious council held in Trent, a town in South...
A type of shock absorber. A plain cypress wooden t...
A perennial herb of the Convolvulaceae family, wid...
…It is an abbreviation of Confederazione Generale...
Born April 21, 1818 in Lanesborough, Massachusetts...
A logic that studies the structure of arguments c...
…He started out as a merchant in Cologne, but aro...
A representative social activist of modern Okinaw...
An ancient Roman poet. Born to a freed slave in V...
The protons and neutrons that make up an atomic n...
A charitable organization that is inextricably li...