Surface integral - surface integral

Japanese: 面積分 - めんせきぶん(英語表記)surface integral
Surface integral - surface integral

In three-dimensional space, given a surface x = x(u,v), y = y(u,v), z = z(u,v), consider integrating a continuous function f(x,y,z) defined in a region D in the space that contains this surface on this surface.

Now, when u and v move through a certain region M in the u-v plane, a corresponding portion S M on the surface is drawn. If M is divided into a fine mesh (as when considering the area on a plane), and the corresponding small portion S k on the surface is taken as well as a point P k within S k , and Σf(P k )S k is considered, then as the mesh is uniformly refined, it will converge to a certain limit value. This value is called the surface integral of f(x,y,z) on the surface S M , and is given by

Next,

To do this, let the unit normal vector at each point on this surface be n=(λ,μ,ν). Then,

The integrals for dzdx and dxdy are calculated by replacing λ with μ and ν, respectively.

[Osamu Takenouchi]

Gauss's rule

Suppose we have a C1 function (a function with continuous partial derivatives) f(x,y,z) in a bounded region D in space. Consider a subregion V in D that is enclosed by a closed surface S.

etc. are true.

This corresponds to Green's formula for line integrals, and is important in the calculation of multiple integrals. Stokes' theorem is also well-known and often used.

[Osamu Takenouchi]

[Reference] | Multiple integrals

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

三次元空間において、曲面x=x(u,v),y=y(u,v),z=z(u,v)が与えられたとして、この曲面を含む空間内の一つの領域Dにおいて定義された連続関数f(x,y,z)があるとき、これをこの曲面上で積分することを考える。

 いま、u、vがu‐v平面内のある領域Mを動くとき、対応して曲面上の部分SMが描かれるものとする。Mを細かい網目(あみめ)に分割し(平面上の面積を考えたときのように)、対応して得られる曲面上の小部分Skと、Sk内の一点Pkをとって、Σf(Pk)Skを考えると、これは網目を一様に細かくしていくとき、ある極限値に収束する。この値をf(x,y,z)の曲面SM上における面積分といって、

で表す。次に、

という形の面積分を定義する。そのために、この曲面の各点における単位法線ベクトルをn=(λ,μ,ν)とする。そして

と定める。dzdx,dxdyに関する積分は、λをそれぞれμ、νで置き換えたものとする。

[竹之内脩]

ガウスの定理

空間内の有界な領域DでC1級関数(連続な偏導関数を有する関数)f(x,y,z)が与えられているとする。D内に、閉曲面Sによって囲まれた部分領域Vを考えるとき、

などが成り立つ。

 これは、線積分の場合のグリーンの公式に対応するものであり、重積分の計算において重要である。また、ストークスの定理とよばれる定理も著名でよく用いられる。

[竹之内脩]

[参照項目] | 重積分

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Interview - Mensetu

>>:  Areal velocity

Recommend

Kanjo hanging - Kanjo hanging

...Therefore, they try to prevent the intrusion o...

Du Bois, WP (English spelling) DuBoisWP

...D. DeJong's Before the Storm (1943) and Af...

Jan II Kazimierz

…The Polish royal family also ended with the seve...

High temperature corrosion

…The temperature at which a material becomes unus...

Tengunishi (English spelling) false fusus

A gastropod snail of the family Acanthidae in the...

Horse bell - flapping

Usually, it is an ornament attached to a horse'...

Naruhito - Naruhito

The 126th Emperor according to the Imperial Linea...

Livius Andronicus, L. (English spelling) LiviusAndronicusL

…Roman drama is officially considered to have beg...

Ichiyakusou (medicinal herb) - Ichiyakusou (English spelling) Pyrola japonica

An evergreen perennial plant of the Atractylaceae ...

Kinneret [Lake] - Kinneret

…A freshwater lake located in the Jordan Rift Val...

Fujiwara no Hideyasu

A warrior in the early Kamakura period. He was a ...

Inyaku - Inyaku

…These duties were similar to those of the provin...

Uchino (Kyoto) - Uchino

…The fire destroyed the government offices in the...

Suffocation - Quickly

Asphyxia is a condition in which the body lacks o...

Theatre de France

...First of all, the Moscow Art Theatre was found...