Bernoulli's theorem

Japanese: ベルヌーイの定理 - べるぬーいのていり(英語表記)Bernoulli's theorem
Bernoulli's theorem

For a perfect fluid with negligible viscosity, whose density does not change along the flow (water is a typical example), and which flows steadily, the relationship H = p + (1/2)ρ v 2 + ρΩ is expressed along the streamline.
This theorem was announced by D. Bernoulli of Switzerland in 1738. Here, p is the static pressure, ρ is the density of the fluid, and v is the flow velocity. Ω is the potential of the force F acting on the fluid. In the case of gravity on Earth, Ω can be expressed as Ω = g z . g is the gravitational acceleration, and z is the height of the fluid measured from a certain reference point. Bernoulli's theorem is obtained by integrating the equation of motion, and shows that the energy H of a fluid is conserved on a streamline. The first term on the right hand side of H represents the internal energy stored due to pressure, the second term represents kinetic energy, and the third term represents potential energy. Bernoulli's theorem is applied to explain various fluid phenomena and to instruments that measure flow rate and flow velocity.

Bernoulli's principle can be extended to more general fluids. If the density ρ of a fluid is expressed as a function of pressure p , then

Using the above formula, H = +(1/2) v 2 +Ω is constant (this is called barotropic flow). Also, when the flow is not steady but has no vortexes, the flow velocity v is expressed by the velocity potential Φ. In this case,

is conserved throughout the entire region of vortex-free flow. This is called the pressure equation, or generalized Bernoulli's law.

[Ryo Ikeuchi]

[Reference] | Static pressure | Dynamic pressure | Bernoulli | Streamlines

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

粘性が無視できる完全流体で、その密度が流れに沿って変化せず(水はこの典型である)、かつ定常的に流れている場合、流線に沿って関係式
  Hp+(1/2)ρv2+ρΩ
が成り立つという定理。スイスのD・ベルヌーイが1738年に発表した。ここに、pは静圧、ρは流体の密度、vは流速である。Ωは、流体に働く力Fのポテンシャルである。地球上の重力の場合、ΩはΩ=gzと表される。gは重力加速度、zはある基準点から測った流体の高さを示す。ベルヌーイの定理は運動方程式を積分して得られるもので、流線上で流体のエネルギーHが保存されることを示している。Hの右辺第1項は圧力によって蓄えられる内部エネルギー、第2項は運動エネルギー、第3項は位置エネルギーを表している。ベルヌーイの定理は、いろいろな流体現象の説明や、流量や流速の測定器に応用されている。

 ベルヌーイの定理は、より一般的な流体について拡張される。流体の密度ρが圧力pの関数で表される場合は、

を用いてH=+(1/2)v2+Ωが一定となる(バロトロピー流という)。また、流れが定常的ではないが渦なしの場合、流れの速度vは速度ポテンシャルΦで表される。この場合、

は渦なしの流れ全領域にわたって保存される。これを圧力方程式または一般化したベルヌーイの定理という。

[池内 了]

[参照項目] | 静圧 | 動圧 | ベルヌーイ | 流線

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Berne Convention

>>:  Bernoulli number - Bernoulli number

Recommend

Hot spring [town] - Onsen

A former town in Mikata County in northern Hyogo P...

Air intake - Air intake

… In addition to an aircraft configuration that h...

Tell Zeror

The ruins of an ancient city in the northern Sharo...

Tomoda-so

This manor was located in the mountains of norther...

freezing point

1. A full-length novel by Ayako Miura. It was subm...

Onmatsuri Sarugaku - Festival Sarugaku

Sarugaku is performed at the festival of Kasuga Wa...

embelin

… Many quinones are found in nature. Benzoquinone...

canso

...The work is often concluded with a concluding ...

Shiranamimono - Shiranamimono

A general term for storytelling, kabuki, and other...

Akatsukidai - Kyotai

A haiku poet from the mid-Edo period. His surname...

Archiv - Alhiv

Same as "Archive 1 ". Archive. Source: A...

Hara Martinho (English spelling)

One of the Tensho Embassies to Europe. His Portug...

Log cabin - Marutagaya (English name) log cabin

A cabin made of assembled logs, it became a symbol...

Hui people

→Hui Source : Heibonsha Encyclopedia About MyPedia...

Tartarus - Tartaros (English spelling)

In Greek mythology, Tartarus is the personificati...