It is named after J. Bernoulli I as a rational number found when expanding a polynomial (Bernoulli polynomial) that calculates the sum of powers of natural numbers. When x /( e x -1) is expanded into a power series, x /( e x -1)=Σ B ' n ( x n / n !)= B ' 0 + B ' 1 ( x /1!)+ B ' 2 ( x 2 /2!)+…, it appears as the coefficients, where B ' 0 =1, B ' 1 =-1/2, B ' 2 =1/6, B ' 3 =0, B ' 4 =-1/30, B ' 5 =0, B ' 6 =1/42,… However, in the field of applied mathematics, if Bernoulli numbers are Bn , then Bn = (-1) n -1 B'2n , and they are expressed as Bn = 2( 2n )!ζ( 2n )/(2π) 2n (ζ is the Zeta function ) , with B1 = 1/6 , B2 = 1/30, B3 = 1/42, B4 = 1/30, B5 = 5/66, .... In other words , by adding the sign factor (-1) n , all of them become positive rational numbers. These numbers are called Bernoulli numbers. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
自然数のべきの和を求める多項式 (ベルヌーイの多項式) の展開に伴って見出される有理数で,J.ベルヌーイ (1世) にちなんでこう呼ばれる。 x/(ex-1) をべき級数に展開し,x/(ex-1)=ΣB'n(xn/n!)=B'0+B'1(x/1!)+B'2(x2/2!)+… としたときの係数として現れ,B'0=1,B'1=-1/2,B'2=1/6,B'3=0,B'4=-1/30,B'5=0,B'6=1/42,… である。しかし,一般に応用数学の分野では,ベルヌーイ数を Bn とすると,Bn=(-1)n-1B'2n とおいて,Bn=2(2n)!ζ(2n)/(2π)2n ( ζ はゼータ関数) で表わされ,B1=1/6,B2=1/30,B3=1/42,B4=1/30,B5=5/66,… とされる。すなわち符号因子 (-1)n をつけることによってすべてを正の有理数にするのである。これらの数をベルヌーイ数という。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
...In other words, as Eliot's style of poetry...
...Some contain a large amount of water, while ot...
…Skylab is an abbreviation of sky laboratory. It ...
…This has been the prevailing view since the Edo ...
A river that originates in an area with a lot of ...
…In the mid-Muromachi period, the Hatakeyama and ...
C18H36O (mw268.48). CH3 ( CH2 ) 7CH =CH( CH2 ) 7CH...
Also known as axillary hyperhidrosis. A disease in...
…The Swedish Torbern Olof Bergman (1735-84) was t...
…The warp threads are aligned parallel to each ot...
A cephalopod squid of the family Pelugalidae (illu...
A monk who lives a solitary life and seeks union w...
…(1) Vocal music and instrumental music originall...
Date of birth and death unknown. Military command...
〘 noun 〙 In the Edo period, this position was unde...