Vector - bekutoru (English spelling) vector

Japanese: ベクトル - べくとる(英語表記)vector
Vector - bekutoru (English spelling) vector

A quantity that has not only a magnitude but also a direction and orientation. Examples include displacement, force, velocity, electric fields, and magnetic fields, and many other quantities that are dealt with in physics are expressed as vectors. In contrast, quantities that are determined only by units and numbers, such as length, time, mass, and heat, are called scalars.

For example, consider the following two cases on a plane. [1] An east wind of force 3 is blowing everywhere. [2] A person moves from anywhere to a point 4 kilometers north ((1) in the diagram ). In both of these cases, the content can be fully described with just two elements: direction and magnitude. A quantity that is defined on a plane by direction and magnitude in this way is called a plane vector. If we replace the plane with space, we can define a space vector. To simplify the description below, we will simply call plane vectors vectors and discuss them here, but the same applies to space vectors unless otherwise noted.

[Ryoichi Takagi]

Vector symbol

Vectors are often represented by symbols such as a , b , c , … or ,,, …. Vectors can be specifically illustrated using directed segments as follows ( Figure (2)). For any two points A and B on a plane, an arrow pointing from A to B is called a directed segment and written as ,. A is called the starting point and B is called the end point. This has a direction and a magnitude, so it represents one vector a . However, vectors are quantities that only have a direction and a magnitude, in other words, two vectors with the same direction and magnitude are the same, so two directed segments with the same direction and length all represent the same vector a . Any one of them is considered to represent vector a , and written as a =. In this way, there are many directed segments that represent one vector, but of these, there is only one that starts at a given point. In particular, when A=B, is considered to be a directed segment, and the vector it represents is called the zero vector and written as 0. The length of the line segment AB is called the magnitude, length, or absolute value of a, and written as | a |.

[Ryoichi Takagi]

Addition and subtraction of vectors, and multiplication of a vector and a real number

When two vectors a and b are expressed as a = and b = as in Figure (3), the vector c represented by the directed line segment is called the sum or composite vector of a and b , and can be written as c = a + b . This means that when it is also expressed as b =, OC is the diagonal of the parallelogram OACB (parallelogram law).

For vector a and real number λ, a vector that has the same direction as a when λ is positive or zero, and the opposite direction to a when λ is negative, and whose magnitude is |λ| times the magnitude of a , is called a scalar multiple of a , denoted as λ a . A vector that has the opposite direction to a and the same magnitude as a is called the inverse vector of a , denoted as - a . The following relationship holds for vectors a , b , and c .

(1) a + b = b + a
(2) ( a + b )+ c = a +( b + c )
(3) a +0 = a
(4) a + (- a ) = 0
(5) k ( a + b )= ka + kb
( k is a scalar)
(6) k ( la )=( kl ) a
( k , l are scalars)
(7) 1a = a
For one vector a , the combination of a and the starting point of the directed line segment that represents it is called a bound vector. In physics, an example is when a force vector and the point on which it acts are considered simultaneously. To distinguish this from this, the ordinary vector a itself is called a free vector. When the origin O is defined on a plane, the vector represented by the directed line segment is determined for any point A on the plane, and this is called the position vector of A. When point O is defined in this way, there is a one-to-one correspondence between the points on the plane and the position vector, so in this sense it is common to consider the plane as a collection of vectors. A vector with a magnitude of one is called a unit vector.

Two vectors e1 and e2 are called fundamental vectors when neither of them is a scalar multiple of the other (in space, vectors e1 , e2 , and e3 are called fundamental vectors when they cannot be represented by three directed line segments contained in the same plane). For example, two unit vectors (three in space) parallel to the Cartesian coordinate axes are fundamental vectors ( Figure (4)). When e1 and e2 (in space, the vectors are e1 , e2 , and e3 , but space will be omitted below ) are fundamental vectors, any vector a can be expressed in only one way : a = a1e1 + a2e2
( a1 , a2 ) are called the components related to e1 and e2 . In this way, once one fundamental vector is defined, vector a can be expressed using its components ( a1 , a2 ), so it can also be written as a = ( a1 , a2 ). Using this notation to write the sum and scalar multiplication of vectors, it can be easily written as
( a 1 , a 2 )+( b 1 , b 2 )
= ( a1 + b1 , a2 + b2 )
k ( a 1 , a 2 )=( ka 1 , ka 2 )
It becomes.

[Ryoichi Takagi]

[Reference] | Scalar
Vector
©Shogakukan ">

Vector


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

大きさだけでなく、方向と向きをもつ量。変位、力、速度、電場、磁場などはその例で、物理学で扱う量のなかには、このほかにもベクトルとして示される量は少なくない。これに対して、長さ、時間、質量、熱量などのように単位と数値だけで決まる量をスカラー(量)という。

 たとえば、次のように平面上の二つの場合を考えてみる。〔1〕至る所で風力3の東風が吹いている。〔2〕どこからでもよいからある人が北方4キロメートル離れた地点まで移動する(の(1))。この二つの場合では、ともに方向と大きさという二つの要素だけで内容を完全に述べることができる。このように平面上で方向と大きさで規定される量を平面ベクトルという。平面を空間に置き換えれば、空間ベクトルが定義できる。以下記述を簡単にするために、平面ベクトルを単にベクトルとよび、これについて述べるが、空間ベクトルに対してもとくに補足がない限り同様である。

[高木亮一]

ベクトルを表す記号

ベクトルを表す記号としてはa, b, c,……とか,,,……とかを用いることが多い。ベクトルは次のように有向線分を用いて具体的に図示することができる(の(2))。平面上の任意の2点A、Bに対し、AからBに向かう矢印を有向線分といい、,と書く。Aを始点、Bを終点という。これは方向と大きさをもっているから、一つのベクトルaを表している。ところが、ベクトルは方向と大きさだけをもつ量であり、いいかえれば、同じ方向と同じ大きさをもつ二つのベクトルは同一であるから、向きと長さが等しい二つの有向線分はすべて同一のベクトルaを表していることになる。そのうちの任意の一つがベクトルaを代表しているとみなして、a=と書き表す。このように一つのベクトルを表す有向線分はたくさんあるが、そのうち、与えられた点を始点とするものはただ一つである。とくにA=Bのときも、を有向線分と考えて、これが表すベクトルをゼロベクトルといい、0と書く。また線分ABの長さをaの大きさ、または長さ、または絶対値といい、|a|と書く。

[高木亮一]

ベクトルとベクトルの和と差、ベクトルと実数との積

二つのベクトルabに対して、の(3)のようにa=,b=と表すとき、有向線分の表すベクトルcabの和ベクトルまたは合成ベクトルといい、c=a+bと書く。これは、b=とも表すとき、OCが平行四辺形OACBの対角線になっていることを意味している(平行四辺形の法則)。

 ベクトルaと実数λに対して、λが正またはゼロのときはaと同方向を、そして負のときはaと逆方向をもち、大きさがaの大きさの|λ|倍であるようなベクトルをaのスカラー倍といい、λaと書く。aと向きが逆でaと同じ大きさをもつベクトルをaの逆ベクトルといい、-aと書く。ベクトルabcについては次の関係が成り立つ。

(1) a+b=b+a
(2) (a+b)+c=a+(b+c)
(3) a+0=a
(4) a+(-a)=0
(5) k(a+b)=ka+kb
    (kはスカラー)
(6) k(la)=(kl)a
    (k,lはスカラー)
(7) 1a=a
 一つのベクトルaに対して、aおよびこれを表す有向線分の始点を組みにして考えたものを束縛ベクトルという。物理学で、力のベクトルとそれが作用する点を同時に考えるのはその例である。これと区別するために普通のベクトルa自身を自由ベクトルという。平面に原点Oを定めると、平面の任意の点Aに対して、有向線分の表すベクトルが定まるが、これをAの位置ベクトルという。このようにして、点Oを定めると、平面の点と位置ベクトルが一対一に対応するので、この意味において平面をベクトルの集合とみなすのが普通である。なお、大きさが一のベクトルを単位ベクトルという。

 二つのベクトルe1e2のどちらも他方のスカラー倍になっていないとき、これらを基本ベクトルという(空間においては、ベクトルe1e2e3が同一の平面に含まれる3本の有向線分によって表されないとき、これらを基本ベクトルという)。たとえば、直交座標軸に平行な二つの(空間では三つの)単位ベクトルは基本ベクトルである(の(4))。e1e2(空間ではe1e2e3となるが、以下空間については省略する)が基本ベクトルのとき、任意のベクトルaはただ1通りの方法で
  a=a1e1+a2e2
と表すことができる。(a1,a2)をe1e2に関する成分という。このように、基本ベクトルを一つ定めておけばベクトルaをその成分(a1,a2)で表示できるので、a=(a1,a2)とも書く。この表示法でベクトルの和とスカラー倍を書くと、簡単に、
  (a1,a2)+(b1,b2)
   =(a1+b1,a2+b2)
  k(a1,a2)=(ka1,ka2)
となる。

[高木亮一]

[参照項目] | スカラー
ベクトル〔図〕
©Shogakukan">

ベクトル〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Vector analysis - vector analysis

>>:  Hector - Hector (English spelling)

Recommend

Opinion-based

...This was replaced by the so-called Gozen-satai...

Kingdom of the Netherlands - Holland (English spelling)〈Portugal〉Holanda

A constitutional kingdom in northwestern Europe. O...

tegal

…It is the opposite of sawa, which means a paddy ...

Bloodstone

Also known as bloodstone, blood star stone, blood ...

Qasim Khan (Astrakhan)

...Kipchak Khanate was one of the successor state...

Countryside scale - Inakabushi onkai

〘Noun〙 A scale used in inaka-bushi. A positive sca...

The city of women only - Onnadake no Miyako (English: The city of women only)

French film. Made in 1935. Released in Japan in 1...

Isbahan - Isbahan

...Population: 1.22 million (1994). The correct p...

psychic dependence

...Psychic dependence is a state in which the per...

Political debate - Seiron

〘 noun 〙 Opinion or discussion on politics. ※ West...

Bhillama

...also called the Sevuna dynasty. Bhillama, a va...

Catarrhal appendicitis - Catarrhal appendicitis

…The terms gastric catarrh and colon catarrh are ...

The Owa sect theory

A doctrinal debate took place between the Hosso a...

Torga, Miguel

Born: August 12, 1907, Trazuosmontes, San Martinho...

Shinoda Forest

Utamakura. Located in Izumi City, Osaka Prefecture...