Two lines that do not intersect on the same plane are said to be parallel. When two lines are parallel, the corresponding angles formed by intersecting another line with them are equal ( (1)). Conversely, on a plane, if the corresponding angles formed by two lines intersecting another line with them are equal, the two lines are parallel. Also, on any line that intersects two parallel lines perpendicularly, the length of the line segment between the two lines is constant, and this is called the distance between the two parallel lines ( (2)). For three lines l, m, and n, if l and m, and m and n are parallel, l and n are also parallel. Next, there is a half-line OA with O as its end, and a half-line O′A′ with O′ as its end, and the lines OA and O′A′ are parallel. In this case, if A and A′ are on the same side of the line OO′, then the half-lines OA and O′A′ are said to be parallel in the same direction ( (3)), and if A and A′ are on opposite sides of the line OO′, then the half-lines OA and O′A′ are said to be parallel in opposite directions ( (4)).When two planes in space are said to be parallel, it means that they have no points in common. If the two lines formed when two planes α and β intersect with another plane are a and b, then a and b are parallel ( (5)). On any line perpendicular to two parallel planes, the length of the line segment between the two planes is constant, and this is called the distance between the two planes. For three planes α, β, and γ, when α and β, and β and γ are parallel, respectively, then α and γ are also parallel. Also, when a line and a plane are parallel, it means that they have no points in common ( (6)).Two lines can be considered parallel even if they overlap. This is the case when dealing with parallel translations and vectors. Two planes in space that overlap can also be considered parallel, and lines can also be included in the parallel category when they are contained within a plane. Two straight lines on a plane: y=mx+k, y=m′x+k′ [Minoru Kurita] ©Shogakukan "> Parallel [Diagram] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
同一の平面上にあって交わらない2直線を平行であるという。2直線が平行のとき、これに別の直線が交わってできる同位角は等しい( (1))。逆に平面上で、2直線が別の直線と交わってできる同位角が等しければ、この2直線は平行である。また、平行2直線に垂直に交わる任意の直線上で、2直線の間にできる線分の長さは一定で、これを平行2直線の距離という( (2))。3直線l、m、nについてはlとm、mとnがそれぞれ平行であれば、lとnも平行である。次に、Oを端とする半直線OAと、O′を端とする半直線O′A′とがあって、直線OAと直線O′A′が平行とする。このとき、直線OO′についてA、A′が同じ側にあれば半直線OA、O′A′は同じ向きに平行であるといい( (3))、直線OO′についてA、A′が反対の側にあれば半直線OA、O′A′は逆向きに平行であるという( (4))。空間で二つの平面が平行であるという場合は、共通点のないことをいう。二つの平面α、βが別の平面と交わってできる2直線をa、bとすると、aとbは平行である( (5))。平行な2平面に垂直な任意の直線上で、2平面の間にできる線分の長さは一定で、これを2平面の距離という。三つの平面α、β、γについて、αとβ、βとγがそれぞれ平行のとき、αとγも平行である。また、直線と平面が平行であるという場合は共通点のないことをいう( (6))。2直線については、重なる場合も含めて平行ということもある。平行移動やベクトルを扱う場合はそうである。また、空間で2平面が重なる場合も平行に含めることがあるし、直線が平面に含まれるときも平行のなかへ入れることもある。 平面上の2直線 [栗田 稔] ©Shogakukan"> 平行〔図〕 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
...Wholesalers are broadly divided into merchant ...
An Italian family of painters who overcame Manneri...
Also called air brakes. A brake that uses compress...
…With the emergence of Charles Darwin in the 19th...
A diode that emits light when a current is passed...
In the late Edo period, as part of the Kansei Ref...
...After the slave trade declined in the 19th cen...
…Gama [Takahiro Matsui]. … *Some of the terminolo...
…It is sometimes simply called a cell organelle o...
...A word derived from government issue. It was w...
A coolant obtained by mixing two or more substanc...
...Critic. Born in Hokkaido. At the time, his fat...
Born November 19, 1831, near Orange, Ohio [Died] S...
…There are said to be hundreds or even thousands ...
…A holding company that is the core company of Em...