Fermi level

Japanese: フェルミ準位 - ふぇるみじゅんい(英語表記)Fermi level
Fermi level

In the distribution of particle systems that follow Fermi-Dirac statistics, such as electrons, protons, and neutrons, at low temperatures, states below a certain energy level are almost entirely occupied by particles, and there are almost no particles in higher states. The energy level at this boundary is called the Fermi level or Fermi energy. As shown in the figure , the probability that a particle will occupy a state of energy ε is the Fermi distribution function f (ε)=1/[ e (ε-μ)/ kT +1]
where μ is the Fermi level, k is the Boltzmann constant, and T is the absolute temperature.

Conduction electrons in metals move around while being subjected to complex forces that change in time and space from the surrounding electrons and atomic cores (ions that remain after emitting conduction electrons), but since this cannot be handled accurately, approximations are used. The simplest is the free electron model, which considers that these forces average out to zero in time and space. In this case, the Fermi level at absolute zero ( T = 0) is given by μ = ( h 2 /8 m )(3 n /π) 2/3 , where h is the Planck constant, m is the mass of the electron, and n is the number of conduction electrons in a unit volume. μ does not change much even when the temperature rises to room temperature. Even at absolute zero, electrons are still flying around, but the electron with the greatest energy has a momentum of p F , determined by μ = p F 2 /2 m . This p F is called the Fermi momentum. If electrons are not free, the distribution of possible energy values ​​will form a band structure, and depending on whether the Fermi level is within the allowed values ​​(inside the band) or outside it in the gap, the material will become a metal, semiconductor, or insulator.

Additionally, when k is the Boltzmann constant and μ = kT F , T F is called the Fermi temperature, which is on the order of tens of thousands of degrees for ordinary metals.

[Akio Koide and Masao Ogata]

[References] | Fermi | Fermi-Dirac statistics | Boltzmann constant
Fermi distribution function (figure)
©Shogakukan ">

Fermi distribution function (figure)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

電子、陽子、中性子など、フェルミ‐ディラック統計に従う粒子系の分布は、低温では、あるエネルギー準位より低い状態はほとんど完全に粒子で占められ、高い状態にはほとんど粒子が存在しない。この境目のエネルギー準位をフェルミ準位またはフェルミ・エネルギーとよぶ。のように、粒子がエネルギーεの状態を占める確率はフェルミ分布関数
  f(ε)=1/[e(ε-μ)/kT+1]
で与えられる。この式で、μがフェルミ準位である(kはボルツマン定数、Tは絶対温度)。

 金属内の伝導電子は、周りにいる電子や原子芯(しん)(伝導電子を放出した残りのイオン)から、時間的・空間的に変化する複雑な力を受けながら動き回るが、これを正確には扱えないので近似を行う。もっとも簡単なものは、これらの力を時間的にも空間的にも平均すればゼロになると考える自由電子模型である。その場合、絶対零度(T=0)のときのフェルミ準位はμ=(h2/8m)(3n/π)2/3で与えられる。hはプランク定数、mは電子の質量、nは単位体積中の伝導電子数である。μは温度が室温程度に上がってもあまり変化しない。絶対零度でも電子は飛び回っているわけであるが、そのうちで最大エネルギーのものはμ=pF2/2mから決まる大きさpFの運動量をもっていることになる。このpFをフェルミ運動量という。電子が自由でないと、とりうるエネルギー値の分布はバンド構造になるが、フェルミ準位が許される値のなか(バンド内)にできるか、それを外れたギャップのところにできるかによって、金属になったり半導体や絶縁体になったりする。

 また、kをボルツマン定数として、μ=kTFと置いたときのTFのことをフェルミ温度といい、通常の金属で数万度の程度になる。

[小出昭一郎・小形正男]

[参照項目] | フェルミ | フェルミ‐ディラック統計 | ボルツマン定数
フェルミ分布関数〔図〕
©Shogakukan">

フェルミ分布関数〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Fermi-Dirac distribution - Fermi-Dirac distribution

>>:  Fermi degeneracy

Recommend

Isomer - nuclear isomer

A nucleus in an excited state is called an isomer ...

Paleoloxodon

This genus includes fossil animals from the middle...

Makinogoke - Makinogoke

A single genus and species of liverwort in the fam...

Hot bulb engine; semi-Diesel engine

A type of compression ignition engine that uses a ...

pekoe

… The grade of black tea is often determined by t...

Obiya Choemon - Obiya Choemon

A title for Kabuki and Joruri. Original title Soga...

Lambert, marquise de (English spelling) Lambertmarquisede

… [Akiko Mabuchi]. . … *Some of the terminology t...

Satellite state (country)

A term used to refer to a group of small and mediu...

Kabuki paintings

A painting based on Kabuki. It mainly refers to wo...

Aiguille

… A narrow, steep mountain ridge with deep valley...

Materials handling equipment

The movement (raising, lowering and lateral moveme...

Osaka Women's Music School

...Private music schools were the Women's Mus...

External funding - Gaibushkin

1. Funds that a company raises from outside source...

Gamou Tadatomo - Gamou Tadatomo

Year of death: August 18, 1634 (October 9, 1634) Y...

Hilti - Carl Hilty

Swiss jurist and Christian ethical writer. His fa...