In the distribution of particle systems that follow Fermi-Dirac statistics, such as electrons, protons, and neutrons, at low temperatures, states below a certain energy level are almost entirely occupied by particles, and there are almost no particles in higher states. The energy level at this boundary is called the Fermi level or Fermi energy. As shown in Conduction electrons in metals move around while being subjected to complex forces that change in time and space from the surrounding electrons and atomic cores (ions that remain after emitting conduction electrons), but since this cannot be handled accurately, approximations are used. The simplest is the free electron model, which considers that these forces average out to zero in time and space. In this case, the Fermi level at absolute zero ( T = 0) is given by μ = ( h 2 /8 m )(3 n /π) 2/3 , where h is the Planck constant, m is the mass of the electron, and n is the number of conduction electrons in a unit volume. μ does not change much even when the temperature rises to room temperature. Even at absolute zero, electrons are still flying around, but the electron with the greatest energy has a momentum of p F , determined by μ = p F 2 /2 m . This p F is called the Fermi momentum. If electrons are not free, the distribution of possible energy values will form a band structure, and depending on whether the Fermi level is within the allowed values (inside the band) or outside it in the gap, the material will become a metal, semiconductor, or insulator. Additionally, when k is the Boltzmann constant and μ = kT F , T F is called the Fermi temperature, which is on the order of tens of thousands of degrees for ordinary metals. [Akio Koide and Masao Ogata] [References] | | |©Shogakukan "> Fermi distribution function (figure) Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
電子、陽子、中性子など、フェルミ‐ディラック統計に従う粒子系の分布は、低温では、あるエネルギー準位より低い状態はほとんど完全に粒子で占められ、高い状態にはほとんど粒子が存在しない。この境目のエネルギー準位をフェルミ準位またはフェルミ・エネルギーとよぶ。 金属内の伝導電子は、周りにいる電子や原子芯(しん)(伝導電子を放出した残りのイオン)から、時間的・空間的に変化する複雑な力を受けながら動き回るが、これを正確には扱えないので近似を行う。もっとも簡単なものは、これらの力を時間的にも空間的にも平均すればゼロになると考える自由電子模型である。その場合、絶対零度(T=0)のときのフェルミ準位はμ=(h2/8m)(3n/π)2/3で与えられる。hはプランク定数、mは電子の質量、nは単位体積中の伝導電子数である。μは温度が室温程度に上がってもあまり変化しない。絶対零度でも電子は飛び回っているわけであるが、そのうちで最大エネルギーのものはμ=pF2/2mから決まる大きさpFの運動量をもっていることになる。このpFをフェルミ運動量という。電子が自由でないと、とりうるエネルギー値の分布はバンド構造になるが、フェルミ準位が許される値のなか(バンド内)にできるか、それを外れたギャップのところにできるかによって、金属になったり半導体や絶縁体になったりする。 また、kをボルツマン定数として、μ=kTFと置いたときのTFのことをフェルミ温度といい、通常の金属で数万度の程度になる。 [小出昭一郎・小形正男] [参照項目] | | |©Shogakukan"> フェルミ分布関数〔図〕 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Fermi-Dirac distribution - Fermi-Dirac distribution
...The Inca imposed a duty of labor on the peasan...
Originally a Latin word meaning image. It is a con...
A British news agency. One of the four major news ...
...The satraps were the king's representative...
A treaty on freedom of association and protection ...
…Kalpa originally means a period of time, so in a...
The Zentei Union took the lead in fighting for wag...
…In 1888, a straddle-type commercial line using s...
Chemistry that deals with all elements and inorga...
Born: November 17, 1788, Kursk [Died] August 23, 1...
…an abbreviation for conductivity-temperature-dep...
Darius was a Persian man who was the son of Hysta...
Year of death: May 8, 1612 (June 7, 1612) Year of ...
... In ancient Mesopotamia, the symbol of Nergal,...
A simple, small-scale theater. It mainly performs...