This is the effect of the plane of polarization rotating when linearly polarized light is transmitted through a transparent material (including ferromagnetic materials) placed in a magnetic field in the direction of the magnetic field (or magnetization). It was discovered by Faraday in 1845 in England in lead glass (= flint glass). It is one of the various magneto-optical effects, and also a type of optical rotation. However, unlike natural optical rotation, there is no retrograde motion of light. If linearly polarized light transmitted through a sample rotates its polarization plane clockwise (relative to the direction of travel) by an angle of θ, then when the transmitted light is reflected in the opposite direction by a mirror, the returning light has its polarization plane rotated by 2θ in the same direction. In other words, reversing the direction of the magnetic field also reverses the direction of rotation of the polarization plane of the transmitted light. The rotation angle θ of the polarization plane is proportional to the thickness l of the sample and the strength H of the magnetic field, and is expressed as θ = VlH . The proportionality constant V is called the Verdet constant, and its sign is determined by the direction of rotation. The Verdet constant is a material constant, but it also depends on the wavelength of light and temperature. In fact, this relationship only holds for diamagnetic materials such as lead glass and quartz, and for paramagnetic materials when the magnetic field is weak. In quartz, the plane of polarization rotates 2 degrees 46 minutes per centimeter in a magnetic field of 1 tesla (symbol T; 1 tesla = 10,000 oersteds (Oe)) for sodium D lines. Ferromagnetic materials show a large Faraday effect, but in this case the magnetization of the ferromagnetic material contributes. In a thin film of iron (30 nanometers thick, several hundred atomic layers), the rotation angle reaches about 1 degree. Optical rotation occurs because the speed of light (refractive index) of right-handed and left-handed circularly polarized light is different within a material. Phenomenologically, this is reduced to the properties of the material's dielectric constant in a magnetic field. Quantum mechanical treatment is required to calculate this dielectric constant, but an intuitive image can be thought of as follows. The effect (force) that electrons in a material receive from a magnetic field varies depending on the direction of rotation of the electron motion. This difference appears as the difference in the speed of light between left-handed and right-handed circularly polarized light. If the magnetic field is reversed, the effect of the magnetic field on the electron motion is reversed, which corresponds to the lack of reversibility in the Faraday effect. Optical isolators and optical circulators that utilize the Faraday effect are also in practical use. The Faraday effect also appears in microwaves (naturally), so it is also used in isolators and circulators in microwave circuits. [Miyadai Asanao] "Light and Magnetism" by Katsuaki Sato (2001, Asakura Publishing) [Reference] | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
磁場中に置かれた透明な物質(強磁性体を含む)に、磁場(または磁化)の方向に直線偏光を透過させたとき、偏光面が回転する効果。1845年イギリスのファラデーが鉛ガラス(=フリントガラス)について発見した。種々の磁気光学効果の一種であるとともに、旋光性の一種でもある。しかし自然旋光性の場合と異なり光の逆行性がない。試料を透過した直線偏光が、(進行方向に対して)偏光面を右回りにθだけ回転したとすれば、その透過光を鏡で反射させて逆向させると、戻って来た光は偏光面が同じ方向に2θだけ回転している。つまり、磁場方向を逆転させると透過光の偏光面の回転方向も逆になるのである。偏光面の回転角θは、試料の厚みlと磁場の強さHに比例しθ=VlHと表される。比例定数Vはベルデ定数とよばれ、回転方向により符号をつける。ベルデ定数は物質定数であるが、光の波長、温度にも依存する。実は、この関係が成立するのは、鉛ガラスや水晶などの反磁性体と磁場が弱いときの常磁性体に対してである。水晶では、ナトリウムD線に対して1テスラ(記号T。1テスラ=1万エルステッド(Oe))の磁場のもとで1センチメートル当り偏光面は2度46分回転する。強磁性体では大きなファラデー効果を示すが、この場合には強磁性体の磁化が寄与している。鉄の薄膜(厚さ30ナノメートル、数百原子層)で回転角は約1度にも達する。 旋光性の現れる原因は、右回りと左回りの円偏光の光速(屈折率)が物質内で異なるからである。現象論的には物質の磁場中での誘電率の性質に帰着される。その誘電率を求めるためには、量子力学的な扱いが必要になるが、直感的なイメージとしては次のように考えてよいであろう。物質内の電子が磁場から受ける影響(力)は、電子運動の回転方向によって異なる。その差が左右の円偏光の光速の差として現れる。磁場を逆転すれば、電子運動が磁場から受ける影響が逆になるので、ファラデー効果における逆行性がないことに対応する。 ファラデー効果を利用した光アイソレータや光サーキュレータなども実用化されている。ファラデー効果は(当然であるが)マイクロ波にも現れるので、マイクロ波回路のアイソレータやサーキュレータにも応用されている。 [宮台朝直] 『佐藤勝昭著『光と磁気』(2001・朝倉書店)』 [参照項目] | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
Also known as acute subglottic laryngitis. This co...
…Rhythm is often translated as rhythm, rhythm, or...
... The Chinese consciousness is nothing but the ...
…[Shiro Katsuya]. . . *Some of the terminology th...
...A tributary of the Sai River that flows throug...
1883‐1955 Spanish philosopher. His family had many...
…A disciple of Song Ik-pil and Yi Yul-gok, he is ...
...Two species of hazel are distributed in Japan,...
A private railway company. The Settsu Electric Rai...
…(1) A protected forest that was a special area o...
...This was a festival to invite the god of Kifun...
...In other words, private residential areas were...
…A musical drama from 1918 with music by Stravins...
This is a collection of scripts from Yuan zaju, a...
A perennial vine in the Asclepiadaceae family (AP...