Standard deviation

Japanese: 標準偏差 - ひょうじゅんへんさ(英語表記)standard deviation
Standard deviation

Standard deviation can be used in two ways: with respect to a group of observations or measurements, and with respect to random variables.

(1) Standard deviation of observed values ​​or measurements A test is administered to a class of n people, and the scores of each person are denoted as x 1 , x 2 , ..., x n . The arithmetic mean is represented as x - .


At this time

is called the variance, and the square root of the variance is called the standard deviation. When the standard deviation is small, the n points are clustered together near one value. In the extreme case, when the standard deviation is 0, each x i has the same value. When the standard deviation is large, the points are scattered overall. In other words, the standard deviation represents the degree of dispersion of a group of observations or measurements.

(2) Standard deviation of a random variable Let X be a discrete random variable. That is, the possible values ​​of X are x 1 , x 2 , …, and the sum of the probabilities p i that X takes the value x i is 1.

At this time

is called the mean value of the random variable X.

is called the variance of the random variable X, and the square root of the variance is called the standard deviation of the random variable X.

Next, let us consider the case where X is a continuous random variable. If we have a continuous function f(x),

and the probability that the value of X belongs to the interval J is

When given by

is called the mean value of the random variable X.

is called the variance of the random variable X, and the square root of the variance is called the standard deviation of the random variable X.

Next, let us consider a general random variable X. Let the distribution function of X be F(x).

is called the mean value of the random variable X.

is called the variance of the random variable X, and the square root of the variance is called the standard deviation of the random variable X.

[Shigeru Furuya]

[Reference] | Random variables | Mathematical statistics

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

標準偏差は、一群の観測値または測定値に対して使用される場合と、確率変数に対して使用される場合の二通りがある。

(1)観測値または測定値の標準偏差 n人のクラスであるテストが行われ、各人の点数をx1、x2、……、xnとする。算術平均をx-で表す。


このとき

を分散といい、分散の平方根を標準偏差という。標準偏差の値が小さいときは、n個の点数は一つの値の近くに固まった形となる。極端な場合として標準偏差が0であれば、各xiはすべて同じ値となる。また標準偏差の値が大きいとき、点数は全体として散らばった形となる。すなわち、標準偏差は一群の観測値または測定値の散らばりの度合いを表すものである。

(2)確率変数の標準偏差 Xを離散型確率変数とする。すなわち、Xのとりうる値がx1、x2、……であって、Xがxiという値をとる確率piについてpiの総和は1であるとする。

 このとき

を確率変数Xの平均値という。また

を確率変数Xの分散といい、分散の平方根を確率変数Xの標準偏差という。

 次にXが連続型の確率変数の場合を考えよう。いま連続関数f(x)があって

を満たし、Xの値が区間Jに属する確率が

で与えられるとき

を確率変数Xの平均値という。また

を確率変数Xの分散といい、分散の平方根を確率変数Xの標準偏差という。

 次に一般の確率変数Xについて考える。Xの分布関数をF(x)とするとき

を確率変数Xの平均値という。また

を確率変数Xの分散といい、分散の平方根を確率変数Xの標準偏差という。

[古屋 茂]

[参照項目] | 確率変数 | 数理統計

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Standard remuneration system/total remuneration system - hyojunhoshuusei sohoshuusei

>>:  Standard sieve (standard sieve)

Recommend

praktische Rationalisierung (English) praktische Rationalisierung

According to him, before the emergence of rationa...

Ohinyobo - Ohinyobo

…Today it is common for husbands to be older than...

Wandering students - clerici vaganti (Latin)

A general term for students who wandered the count...

Great Thou and Little Thou - O-nan-ji-ko-nan-ji

〘Noun〙 An oral tale passed down by hunters. Also, ...

Great Temple of Aten

...The collection mainly consists of discoveries ...

Morning Glory Jellyfish - Morning Glory Jellyfish

This jellyfish belongs to the phylum Coelenterata...

Kiyoshi Miki

Philosopher. Born on January 5, 1897, as the elde...

ragtime

The most prominent musical element that made up j...

The original place of Buddha - Shaka no Honji

The title of a sekkyobushi (a Buddhist chant). The...

Seventeen Banquet Pieces - Enkyokujuunanajo

The title of a book on soga (banquet songs). For d...

Keijo Daily News

A daily colonial newspaper published in Korea, it ...

Malenkov, Georgi Maksimilianovich

Born: January 8, 1902, Orenburg [Died] January 198...

General Anthroposophical Society

According to him, it is necessary to make the con...

Osaka Kabukiza Theatre

… [Diversification of theaters] The main theaters...

Forment, D. (English spelling) FormentD

…The Gothic style was introduced in the 14th cent...