Elliptic geometry and hyperbolic geometry are collectively called non-Euclidean geometry. Among the axioms of Euclidean geometry, the independence of the so-called parallel line axiom had been questioned for a long time, but in the 19th century, its independence was proven and two new geometries were constructed: hyperbolic geometry by Lobachevsky and Bolyai (1820s) and elliptic geometry by Riemann (1854). In the axioms of Euclidean geometry, the axiom system obtained by replacing the parallel line axiom with "there are at least two lines that pass through a point outside the line and do not intersect this line" gives hyperbolic geometry, while the axiom system obtained by replacing it with "two lines always intersect" gives elliptic geometry. Euclidean geometry is sometimes called parabolic geometry. Hyperbolic geometry and elliptic geometry are collectively called non-Euclidean geometry, but this name is not appropriate because there are many other types of geometry today that are not Euclidean geometry. Historically, non-Euclidean geometry was constructed axiomatically, but in modern terms, non-Euclidean geometry is considered a special case or a typical model of Riemannian geometry. Riemannian geometry on a space of positive constant curvature, i.e., a sphere (or projective space), is spherical geometry (or elliptic geometry), while Riemannian geometry on a space of negative constant curvature, i.e., a hyperbolic space, is hyperbolic geometry. Riemannian geometry on a space of zero constant curvature, i.e., a Euclidean space, is hyperbolic geometry. In the axiomatic construction, basic concepts such as a line and a plane are undefined elements, whereas in the Riemannian perspective, these are concretely defined. For example, a line is defined as the locally shortest line connecting two points, i.e., a geodesic. Each geometry has the following characteristics. In Euclidean geometry, (1) there are two points that can be any distance apart. (2) the length of a geodesic is infinite. (3) there is only one geodesic that passes through two points. (4) the so-called parallel axiom holds. (5) the sum of the interior angles of a triangle is π. In spherical geometry, (1) there is an upper limit to the distance between any two points. (2) a geodesic is a closed curve with a constant length. (3) there is not necessarily only one geodesic that passes through any two points. (4) two geodesics always intersect. (5) the sum of the interior angles of a triangle is greater than π. In hyperbolic geometry, (1) there are two points that are arbitrarily far apart. (2) the length of a geodesic is infinite. (3) there is only one geodesic that passes through two points. (4) there are infinitely many geodesic lines that pass through a point outside the geodesic but do not intersect the geodesic. (5) the sum of the interior angles of a triangle is less than π. In Klein's view, elliptic geometry is a classical geometry determined by a projective space and the group of projective transformations that keep positive definite quadratic forms acting on it invariant, while hyperbolic geometry is a classical geometry determined by a sphere and the group of projective transformations that keep Lorentzian quadratic forms acting on it invariant. [Koichi Ogiue] "Introduction to Geometry" by Seiji Takizawa (1967, Asakura Publishing) [Reference] | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
楕円幾何学(だえんきかがく)と双曲幾何学を総称して非ユークリッド幾何学という。ユークリッド幾何学の公理系のなかで、いわゆる平行線の公理の独立性が古くから疑問視されていたが、19世紀に入ってその独立性が証明され、2種類の新しい幾何学が建設された。ロバチェフスキーとボヤイによる双曲幾何学(1820年代)とリーマンによる楕円幾何学(1854)である。ユークリッド幾何学の公理系において、平行線の公理を「直線外の1点を通ってこの直線と交わらない直線が少なくとも2本存在する」で置き換えて得られる公理系が双曲幾何学を、また、「二直線はかならず交わる」で置き換えて得られる公理系が楕円幾何学を与える。ユークリッド幾何学を放物幾何学とよぶこともある。双曲幾何学と楕円幾何学をあわせて非ユークリッド幾何学とよばれているが、ユークリッド幾何学に非(あら)ざる幾何学は今日ではこの2種以外にたくさん存在するので、この名称は適当とはいえない。 非ユークリッド幾何学は歴史的には公理論的に構成されたが、現代的な見地では、非ユークリッド幾何学はリーマン幾何学の特殊な例ないしは典型的なモデルとみなされる。正の定曲率空間、すなわち球面(または射影空間)上のリーマン幾何学が球面幾何学(または楕円幾何学)であり、負の定曲率空間、すなわち双曲空間上のリーマン幾何学が双曲幾何学である。また、ゼロの定曲率空間、すなわちユークリッド空間上のリーマン幾何学がユークリッド幾何学である。公理論的構成法においては、直線、平面などの基本的な概念が無定義要素であるのに対して、リーマン幾何学の立場ではこれらは具体的に定義される。たとえば、直線は2点を結ぶ局所最短線、すなわち測地線として定義される。 各幾何学は次のような特徴をもつ。ユークリッド幾何学では、(1)いくらでも離れた2点がある。(2)測地線の長さは無限大。(3)2点を通る測地線はただ1本。(4)いわゆる、平行線の公理が成り立つ。(5)三角形の内角の和がπ。 球面幾何学では、(1)任意の2点間の距離には上限がある。(2)測地線は閉曲線で長さ一定。(3)2点を通る測地線はただ1本とは限らない。(4)2本の測地線はかならず交わる。(5)三角形の内角の和がπより大。 双曲幾何学では、(1)いくらでも離れた2点がある。(2)測地線の長さは無限大。(3)2点を通る測地線はただ1本。(4)測地線外の1点を通ってこの測地線と交わらない測地線が無数に存在する。(5)三角形の内角の和がπより小。 クラインの見地では、射影空間とそれに作用する正定値二次形式を不変にする射影変換全体のなす群によって決まる古典幾何学が楕円幾何学、球体とそれに作用するローレンツ型二次形式を不変にする射影変換全体のなす群で決まる古典幾何学が双曲幾何学である。 [荻上紘一] 『滝沢精二著『幾何学入門』(1967・朝倉書店)』 [参照項目] | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
A collection of haiku poems. Compiled by Shisan. P...
A river that flows north from northeastern France,...
Along with parent-child and marital relationships,...
...The first performance was the breakthrough per...
A game of haiku poetry. Three people create a vers...
[raw]? [Died] Emperor Hui 5 (190 BC) A meritorious...
...A general term for compounds represented by th...
A Chinese Ming Dynasty treatise written by Wang Qi...
This refers to plants that have been transferred ...
…In the old Chinese legal system, a system was in...
...A membership-based organization that allows re...
An artificial satellite launched for the purpose ...
…If we observe the number of particles n j occupy...
Aomori Hiba, or "beautiful forest," refe...
A disk-shaped membrane that constitutes the anteri...