Discriminant - discriminant

Japanese: 判別式 - はんべつしき
Discriminant - discriminant

N-dimensional equation f(x)=a 0 x n +a 1 x n-1 +……+a n =0
Let α 12 ,……,α n be the solutions to D=a 0 2(n-1)12 ) 2
×(α 13 ) 2 ……
1n ) 2
×(α 23 ) 2 ……
2n ) 2
×………………
×(α n-1n ) 2
is called the discriminant for f(x)=0.

When n=2 and f(x)=ax 2 +bx+c=0, let the two solutions be α and β. Then D=a 2 (α-β) 2 =b 2 -4ac
and the solution for f(x)=0 is

This is expressed as:

When n=3 and f(x)=ax 3 +bx 2 +cx+d=0, let the three solutions be α, β, and γ, and then D=a 4 (α-β) 2 (α-γ) 2 (β-γ) 2
=b 2 c 2 +18abcd-4ac 3 -4b 3 d
-27a 2 d 2
In particular, when f(x)=x 3 +cx+d, D=-4c 3 -27d 2
And the solution for f(x)=0 is

The way to take δ is to take it to the third power.

Take one number such that x = 0, set it as δ 0 , and create δ 0 ω, δ 0 ω 2 (ω is the cube root of 1), which will determine the three values ​​of x.

Let α be the solution to an irreducible equation f(x)=0 with rational coefficients, and let Q(α) be the field obtained by adding α to the field of rational numbers Q. The discriminant of f(x)=0 is an integer, and its value has important significance for the number-theoretic structure of Q(α).

[Terada Fumiyuki]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

n次方程式
  f(x)=a0xn+a1xn-1+……+an=0
の解をα12,……,αnとするとき
  D=a02(n-1)12)2
    ×(α13)2……
    (α1n)2
    ×(α23)2……
    (α2n)2
    ×………………
    ×(αn-1n)2
をf(x)=0の判別式という。

 n=2でf(x)=ax2+bx+c=0のときは、二つの解をα、βとすると
  D=a2(α-β)2=b2-4ac
であり、f(x)=0の解は

と表される。

 n=3でf(x)=ax3+bx2+cx+d=0のときには、三つの解をα、β、γとして
  D=a4(α-β)2(α-γ)2(β-γ)2
   =b2c2+18abcd-4ac3-4b3d
   -27a2d2
とくにf(x)=x3+cx+dのときは
  D=-4c3-27d2
でありf(x)=0の解は

と表される。δのとり方は、三乗して

となる数を一つとり、それをδ0として、δ0ω,δ0ω2(ωは1の立方根)をつくればよいので、三つのxの値が定まる。

 有理数を係数とする既約方程式f(x)=0の解をαとし、有理数体Qにαを付加した体をQ(α)とする。f(x)=0の判別式は整数であり、その値はQ(α)の整数論的な構造に重要な意味をもっている。

[寺田文行]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Discriminant analysis

>>:  Fan Wenlan - Half-Bran

Recommend

Acidless orange

…When we say orange, we usually mean this sweet o...

"Yin Calendar" - Inrekifu

…After graduating from Peking University, he beca...

Geiyo Islands

The term refers to the islands in the western Set...

Paul Cézanne

A French painter, he is considered one of the gre...

Kai Iijima - Kai Iijima

Zoologist. Born in Hamamatsu, Totomi Province (Sh...

Thyroptera discifera (English spelling) Thyropteradiscifera

...A mammal belonging to the family Thyropteridae...

Political police - Seiji Keisatsu (English spelling)

A division of the administrative police, also kno...

Coefficient of parentage

...The coefficient of parentage between individua...

Dividend - Haito

Generally speaking, it means the distribution of ...

Great unity - Daido Danketsu

[1] (noun) The unity of many groups or factions un...

Net reproduction rate

…There are some significant differences in the tr...

Papago

...A prehistoric culture of American Indians that...

Prison Studies

…Social worker and prison scholar. Born in Ueda, ...

Trumpet sea urchin (Toxopneustes pileolus)

An echinoderm (illustration) of the family Trumpet...

Golden Gate Bridge - Golden Gate Bridge

This road suspension bridge straddles the entrance...