A function of coordinates and momentum, it represents the mechanical properties of a physical system and determines its motion. It was introduced by British mathematician and physicist W.R. Hamilton (1828, 32). When only conservative forces are in effect and the constraints do not include time, it represents the sum of the kinetic and potential energy of the system, i.e., the total energy of the system, and the law of conservation of mechanical energy means that the value of this function does not change over time. The equation of motion based on the Hamilton function is called Hamilton's canonical equation, and the form of mechanics that starts from it is called the Hamiltonian form. Its content is equivalent to Newton's equation of motion, but in this form, both coordinates and momentum are independent variables, and it is possible to make the form of the canonical equation unchanged for appropriate coordinate transformations that include both. Such a transformation is called a canonical transformation. The canonical equations correspond to the Heisenberg equations of quantum mechanics, and played an important role in the transition from classical mechanics to quantum mechanics. If the Hamiltonian function of a dynamical system with f degrees of freedom is H, and the generalized coordinates and their conjugate momentum are (q i , p i )i=1,2,……,f, the canonical equations can be obtained as the following 2f simultaneous first-order partial differential equations by transforming the Lagrange equation.
Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
座標と運動量の関数で、ある物理系の力学的特性を表しその運動を規定する量。イギリスの数学者・物理学者のW・R・ハミルトンが導入(1828、32)。保存力のみ働き拘束条件が時間を含まない場合には、系の運動エネルギーとポテンシャルエネルギーの和、すなわち系の全エネルギーを表し、力学的エネルギー保存則はこの関数の値が時間的に変わらないことを意味する。ハミルトン関数に基づく運動方程式をハミルトンの正準方程式、それから出発する力学の形式をハミルトン形式とよぶ。その内容はニュートンの運動方程式と同等であるが、この形式では座標と運動量がともに独立変数で、両者を含む適当な座標変換に対して正準方程式の形が変わらないようにできる。そのような変換を正準変換という。 正準方程式は量子力学のハイゼンベルク方程式に対応するもので、古典力学から量子力学への移行に重要な役割を演じた。自由度fの力学系のハミルトン関数をH、一般化座標とそれに共役な運動量を(qi,pi)i=1,2,……,fとすると、正準方程式はラグランジュ方程式を変形することによって、次のような2f個の連立一階偏微分方程式として得られる。
出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
In a plane or space, rotations about a fixed point...
This insect belongs to the family Geotrupidae of ...
3α,7α,12α-trihydroxy-5β-cholanic acid. C 24 H 40 ...
…A representative Russian heavy machinery factory...
...This refers to a group of wealthy Edo merchant...
A city in central Fukuoka Prefecture. It was incor...
…After independence, imprisonment with hard labor...
1780‐1860 Founder of the modern Serbian dynasty of...
...In various parts of Wakayama Prefecture, it is...
A system that targets electronic information and ...
[Live] Tenyu 1(904).7.28. Hebei, Gyoshu Yaosan [Di...
Born: October 4, 1892, Tecsing [Died] July 25, 193...
…Especially after the Book of Songs, it was the f...
Also known as a trade imbalance. Refers to an unba...
Elements that exist in relatively small quantitie...