Hamilton's function

Japanese: ハミルトン関数 - はみるとんかんすう(英語表記)Hamilton's function
Hamilton's function

A function of coordinates and momentum, it represents the mechanical properties of a physical system and determines its motion. It was introduced by British mathematician and physicist W.R. Hamilton (1828, 32). When only conservative forces are in effect and the constraints do not include time, it represents the sum of the kinetic and potential energy of the system, i.e., the total energy of the system, and the law of conservation of mechanical energy means that the value of this function does not change over time. The equation of motion based on the Hamilton function is called Hamilton's canonical equation, and the form of mechanics that starts from it is called the Hamiltonian form. Its content is equivalent to Newton's equation of motion, but in this form, both coordinates and momentum are independent variables, and it is possible to make the form of the canonical equation unchanged for appropriate coordinate transformations that include both. Such a transformation is called a canonical transformation.

The canonical equations correspond to the Heisenberg equations of quantum mechanics, and played an important role in the transition from classical mechanics to quantum mechanics. If the Hamiltonian function of a dynamical system with f degrees of freedom is H, and the generalized coordinates and their conjugate momentum are (q i , p i )i=1,2,……,f, the canonical equations can be obtained as the following 2f simultaneous first-order partial differential equations by transforming the Lagrange equation.


[Shinobu Nagata]

[Reference] | Analytical Mechanics

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

座標と運動量の関数で、ある物理系の力学的特性を表しその運動を規定する量。イギリスの数学者・物理学者のW・R・ハミルトンが導入(1828、32)。保存力のみ働き拘束条件が時間を含まない場合には、系の運動エネルギーとポテンシャルエネルギーの和、すなわち系の全エネルギーを表し、力学的エネルギー保存則はこの関数の値が時間的に変わらないことを意味する。ハミルトン関数に基づく運動方程式をハミルトンの正準方程式、それから出発する力学の形式をハミルトン形式とよぶ。その内容はニュートンの運動方程式と同等であるが、この形式では座標と運動量がともに独立変数で、両者を含む適当な座標変換に対して正準方程式の形が変わらないようにできる。そのような変換を正準変換という。

 正準方程式は量子力学のハイゼンベルク方程式に対応するもので、古典力学から量子力学への移行に重要な役割を演じた。自由度fの力学系のハミルトン関数をH、一般化座標とそれに共役な運動量を(qi,pi)i=1,2,……,fとすると、正準方程式はラグランジュ方程式を変形することによって、次のような2f個の連立一階偏微分方程式として得られる。


[永田 忍]

[参照項目] | 解析力学

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Hamilton's principle

>>:  Hamilton, Alexander

Recommend

Kimon

It refers to the direction of Ushitora, or the no...

Hargraves, EH

…However, by the 1940s, the acceptance of convict...

Wang Bao - Wang Bao

... The imperial court and feudal lords each empl...

Lactobacillus

…For example, the genus Bifidobacterium is a memb...

Clathrate Compounds

Also known as an inclusion compound. A substance i...

Erosion control - Sabo

Controlling the production, runoff, and movement ...

Aomori Plain - Aomori Heiya

A plain in the center of Aomori Prefecture. It co...

Madogai (window shell) - Madogai (English spelling) window shell

A bivalve mollusk of the family Myridae (illustrat...

Shiro Okakura - Shiro Okakura

Director. Born in Tokyo. Third son of English sch...

Chionoecetes japonicus (English spelling)

… [Takeda Masatomo]. … *Some of the terminology t...

Moon Viewing

〘 noun 〙 Admiring the moon. Moon viewing. It is of...

Congregational Church - Kaishu wa Kyokai

In English, it is called the Congregational Church...

International Union of Revolutionary Writers

...An international organization for proletarian ...

servant

…Generally, it refers to servants such as low-ran...

Darius [III] - Darius

The last king of the Achaemenid Empire (reigned 33...