Hamilton's principle

Japanese: ハミルトンの原理 - はみるとんのげんり(英語表記)Hamilton's principle
Hamilton's principle

A principle of mechanics given in 1834 by British mathematician and physicist W. R. Hamilton. This principle shows that the motion realized by a mechanical system is characterized by the condition that a certain quantity related to the entire course of the motion is an extreme value. Motion can be determined based on this principle, which is equivalent to Newton's equations of motion. While the latter causally determines moment-to-moment motion from the state immediately preceding it in a differential form, this principle conditions the integral quantity over the entire motion, and is characterized by its expression as if the motion is occurring purposefully.

When a force is derived from a potential, the value of the Lagrangian function is determined along the path between the start and end times of the motion, and its time integral is obtained. This integral value also changes when the path is hypothetically changed slightly. Hamilton's principle is a variational principle that states that these integral values ​​take extreme values ​​for the motion that is realized. When performing variation, the Lagrangian or Hamiltonian equations can be derived by choosing independent variations, and some physical laws other than those of mechanics can also be written in this form, so it is considered a comprehensive formulation.

[Shinobu Nagata]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

イギリスの数学者・物理学者のW・R・ハミルトンが1834年に与えた力学の原理。力学系の実現される運動は、運動の経過全体に関するある量が極値になっているという条件によって特徴づけられていることを示した原理。この原理に基づいて運動を決定できるが、それはニュートンの運動方程式によるものと同等である。後者は微分形式で時々刻々の運動をその直前の状態から因果的に決定するのに対し、この原理は運動全体にわたる積分量に対して条件づけるので、あたかも運動が合目的的におこっているような表現になっているのが特徴である。

 力がポテンシャルから導かれる場合、運動の始まりと終わりの時刻の間の経路に沿ってラグランジュ関数の値が定まりその時間積分が得られる。経路を仮想的に微少変化させるとこの積分値も変わる。ハミルトンの原理は、これらの積分値が実現される運動に対して極値をとるということを述べた変分原理である。変分の際、独立な変分量のとり方によってラグランジュやハミルトンの方程式を導くことができ、また力学以外の物理法則もこの形に書かれるものがあり、包括的な定式化と考えられる。

[永田 忍]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Birmingham - Birmingham

>>:  Hamilton's function

Boa
Boa
Blog    

Recommend

Anal cancer - cancer of the anal canal

Cancer of the anal region. The anus is the lower e...

Ambiguous - Unclear

...The pass is the watershed of the Sasaya Highwa...

One Buddha Vehicle - Ichibutsujo

〘Noun〙 Buddhist term. The teaching that there is o...

opossum-shrimp (English spelling) opossumshrimp

…When the female reaches maturity, she lays eggs ...

Cutleria multifida (English spelling) Cutleria multifida

…[Mitsuo Chihara]. . . *Some of the terminology t...

Kapellmeister (English spelling) (German)

Court Kapellmeister. Sometimes a derogatory term f...

Engi no Junkan - Engi no Junkan

…Or, old age and death exist because there is lif...

Turicum

…A town that developed on either side of the Limm...

The Secret of Communication

The Constitution of Japan is interpreted as a con...

Konohacho (Leaf butterfly) - Konohacho (English spelling) leaf butterfly

An insect of the Nymphalidae family of the Lepidop...

Concave deck ship - Oukouhansen

…In general, if a commercial ship has a superstru...

Hydrogen Bomb - Suisoba Kudan

A nuclear weapon that produces a greater explosive...

McClure's Magazine

...At the end of the 19th century, America also s...

interplanetary dust

…This is because the angle between the ecliptic a...

Eld deer - Eld deer

It is a mammalian animal of the order Artiodactyl...