Permutation - Chikan (English spelling)

Japanese: 置換 - ちかん(英語表記)permutation
Permutation - Chikan (English spelling)

Let M n be the set of numbers 1, 2, ..., n, and let S n represent the set of one-to-one mappings from M n to M n . By taking the composition of mappings as a product, S n forms a group. This is called a symmetric group of degree n. A subgroup of a symmetric group is called a permutation group. If σ is an element of S n, then σ can be visually expressed as

Since the image of the number in the upper row is the number in the lower row, the order of the numbers in the upper row does not have to be in order of size.

It is.

We will now describe a method for calculating the product that makes use of this fact.

Let σ and τ be two elements of S n .


In addition, in a permutation group, the identity element e is the identity permutation

And the inverse of σ is σ -1.

σσ −1−1 σ=e can be confirmed by the above calculation method.

[Tsuneo Adachi]

Cyclic permutation

A permutation that maps i 1 to i 2 , i 2 to i 3 , …, i k to i 1 , and does not move any other numbers, is denoted as (i 1 i 2 … i k ). This kind of permutation is called a cyclic permutation. Every permutation can be expressed as a product of cyclic permutations.

[Tsuneo Adachi]

Compatibility

A cyclic permutation of the form (ij) is called a transmutation. Since (i 1 i 2 …i k )=(i k -1 i k )……(i 2 i k )(i 1 i k ), all permutations can be expressed as a product of transmutations. A permutation that can be expressed as a product of an even number of transmutations is called an even permutation, and a permutation that can be expressed as a product of an odd number of transmutations is called an odd permutation. The permutation group consisting of all the even permutations in Sn is called the n-th alternating group.

[Tsuneo Adachi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

Mnを数字1、2、……、nのなす集合とし、SnでもってMnからMnへの一対一写像のなす集合を表すことにする。写像の合成を積とすることによってSnは群をなす。これをn次の対称群という。対称群の部分群を置換群と称する。σをSnの要素とするとσを視覚的に

と表す。上段の数字の像が下段の数字であるから、上段の数字の並び方は大きさ順でなくてもよい。つまり

である。

 この事実を用いる積の計算法を述べておく。

 σ、τをSnの二要素とする。


なお、置換群において単位元eは恒等置換

であり、σの逆元σ-1

である。σσ-1-1σ=eは上記計算法によって確かめられる。

[足立恒雄]

巡回置換

i1をi2に、i2をi3に、……、ikをi1に写し、他の数字を動かさない置換を(i1i2……ik)と記す。この種の置換を巡回置換という。すべての置換は巡回置換の積として表せる。

[足立恒雄]

互換

(ij)という形の巡回置換を互換という。(i1i2……ik)=(ik-1ik)……(i2ik)(i1ik)であるから、すべての置換は互換の積として表せることになる。偶数個の互換の積として表せる置換を偶置換、奇数個の互換の積として表せる置換を奇置換という。Snのすべての偶置換からなる置換群はn次交代群とよばれる。

[足立恒雄]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Permutation group - Chikangun (English spelling)

>>:  Chikarashiba - Chikarashiba

Recommend

Hebrew - Heburaigo

It belongs to the Semitic language family along w...

Chest of drawers - Chest of drawers

A large box with a lid. The word "hitsu"...

Orodes [II] - Orodes

…He cooperated with Mithridates VI of Pontus in h...

Takanosu [town] - Takanosu

An old town in Kitaakita County, occupying the mai...

Gouthière, Pierre

Born: January 19, 1732. Barshrob [Died] 1813/1814....

Sachsen (tribe) (English spelling) Sachsen

...there were three groups: the East Germanic tri...

Master - Shinuchi

The person in charge of a Rakugo or Kodan perform...

Industrial Design

It refers to the creative activity of planning an...

Nerve cell

Also called neurons. Cells that make up nervous ti...

Horse stable - umagoya

〘 noun 〙 A stable for keeping horses. A stable. ※Y...

Terra Sigillata (English spelling)

Although it is a term referring to a field of pott...

Grammy Awards

An American record award. Founded in 1957, the Na...

One-character inheritance type - ichiji keishougata

...While the bilateral type of ancestral name suc...

Gifford, EW

…Edward Sapir linked the bipartite naming system ...

Patriotic Bloodshed - Patriotic Bloodshed

…This is why his criticism of Symbolism, Axel'...