Line integral

Japanese: 線積分 - せんせきぶん
Line integral

This is an integral along a curve, also known as a curve integral. Let L be a curve with a certain length that connects two points A and B. The line integral of a function f(P) on L

Define as follows. Take a number of points P 1 , P 2 , …, P n-1 (A=P 0 , B=P n ) on the curve between A and B, and take point Q 1 between P 0 and P 1 , point Q 2 between P 1 and P 2 , …, point Q n between P n-1 and P n ( Figure A ). Then,

Consider the following. Here, it is the length of the line segment connecting P k-1 ,P k . When the points P 1 ,P 2 ,……,P n-1 ,Q 1 ,Q 2 ,……,Q n are chosen in various ways, and no matter how they are chosen, when these points are densely arranged on L, if they converge to a certain limit value, then this limit value is defined as the value of the line integral (*) mentioned above. If f(P) is bounded and continuous in a part of the plane that includes L, then the line integral exists. In the approximate sum of the line integral, replace with, for example, the difference in the x-coordinates of each point, x k -x k-1 , and we get

Consider the limit value of this, the line integral

Similarly, the line integral

For example, if the area of ​​a part enclosed by a simple closed curve L on a plane ( Figure B ) is S, then

Suppose the boundary of a bounded region D on a plane consists of a finite number of piecewise smooth simple closed curves C1 , C2 , ..., Cm ( Figure C ). All of these boundary curves are oriented while looking leftward inside D, and are collectively represented by C. If f(x,y) and g(x,y) are C first- class functions (functions with continuous partial derivatives) within the range including the boundary of D, then the following equation holds.


This is called Green's theorem.

[Osamu Takenouchi]

Line integral of a complex function

In the approximate sum of line integrals, we replace with the complex difference z k -z k-1 representing each point.

(Z k ′ is the complex number corresponding to Q k ), and the limit value of this is

is defined. Cauchy's integral theorem

and Cauchy's integral formula

etc. are expressions using this line integral.

[Osamu Takenouchi]

Line integral diagram (Figure A)
©Shogakukan ">

Line integral diagram (Figure A)

Line integral diagram (Figure B)
©Shogakukan ">

Line integral diagram (Figure B)

Line integral diagram (Fig. C)
©Shogakukan ">

Line integral diagram (Fig. C)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

曲線に沿って行う積分のことで、曲線積分ともいう。いま、Lは2点A、Bを結ぶ長さのある曲線とする。L上での関数f(P)の線積分

を次のように定める。A、Bの間の曲線の部分に順に数多くの点P1,P2,……,Pn-1(A=P0,B=Pnとする)をとり、またP0,P1の間に点Q1、P1,P2の間に点Q2、……、Pn-1,Pnの間に点Qnをとり(図A)、和

を考える。ここでは、Pk-1,Pkを結ぶ線分の長さである。点P1,P2,……,Pn-1,Q1,Q2,……,Qnのとり方をいろいろに変えるとき、どのようにそれらをとっても、これらの点をL上密になるようにしていったとき、ある極限値に収束するならば、この極限値を前記線積分(*)の値と定義する。f(P)がLを含むような平面のある部分において有界連続ならば、線積分は存在する。線積分の近似和において、を、たとえば、各点のx座標の差xk-xk-1で置き換えて、

を考え、これの極限値として線積分

が定義される。同様に、線積分

も定められる。たとえば、平面上の長さのある単純閉曲線Lで囲まれた部分(図B)の面積をSとすれば、

 平面上の有界な領域Dの境界が、区分的に滑らかな有限個の単純閉曲線C1,C2,……,Cmからなるとする(図C)。これらの境界の曲線は、すべてDの内部を左側に見ながら回る向きをつけてあるものとし、まとめてCで表す。いま、f(x,y),g(x,y)が、D上境界も含めた範囲でC1級関数(連続な偏導関数を有する関数)ならば、次の式が成立する。


これをグリーンの定理という。

[竹之内脩]

複素関数の線積分

線積分の近似和におけるを、各点を表す複素数の差zk-zk-1で置き換えて

(Zk′はQkに対応する複素数)とし、これの極限値として、

が定義される。コーシーの積分定理

および、コーシーの積分公式

などは、この線積分を用いたものである。

[竹之内脩]

線積分説明図〔図A〕
©Shogakukan">

線積分説明図〔図A〕

線積分説明図〔図B〕
©Shogakukan">

線積分説明図〔図B〕

線積分説明図〔図C〕
©Shogakukan">

線積分説明図〔図C〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Qian Quan (English spelling)

>>:  Fan stone

Recommend

Great white wagtail - Great white wagtail

...On the other hand, a subspecies of this specie...

Koryo [town] - Koryo

A town in the Nara Basin, Kitakatsuragi District, ...

Ironside - Ironside

…In astrology, iron is associated with Mars becau...

Angle gauge

This is a standard gauge for measuring angles. Li...

Smith, HO (English spelling)

…This enzyme Eco B was type I. Later, H.O. Smith ...

Bachet, CG (English)

...However, it was not until the 15th and 16th ce...

Aldiss, BW (English spelling) AldissBW

...The question of what kind of creatures are con...

Indiana [State] - Indiana

An industrial and agricultural state in the centra...

Erwin Chargaff

1905‐2002 Austrian-born biochemist. After graduati...

Glamour actress - Glamour actress

A Hollywood term referring to a blonde actress who...

Polystyrene

...A typical general-purpose thermoplastic resin ...

Divisible benefits - kabunkyufu

A gift that can be divided into parts without losi...

Talich, V. (English spelling) TalichV

…At first, the members of the orchestra were also...

Left Socialist Party (Left Socialist Party)

A revolutionary party during the Russian Revolutio...

Amiens Cathedral - Amiens Cathedral

It is a World Heritage Site (cultural heritage) re...