Tangent - tangent

Japanese: 接線 - せっせん
Tangent - tangent

If there is a line connecting point P0 on a curve to a nearby point P, and we consider the limit as P approaches P0 , if this line P0P approaches a certain line l, then this line l is called the tangent to the curve at point P0 . Tangent lines used to be written as intercept lines, but this term is no longer used.

The equation of the tangent at point P 0 (x 0 ,y 0 ) on a quadratic curve such as an ellipse, hyperbola, or parabola is y=m(xx 0 )+y 0
Then, m can be determined from the condition that the quadratic equation obtained by substituting this equation into the equation of the curve has a multiple root. The slope of the tangent at point P 0 (x 0 ,f(x 0 )) on the graph of the function y=f(x) is

Therefore, f(x) is differentiable at x=x 0 if and only if the curve y=f(x) has a tangent at the point P 0 (x 0 ,f(x 0 )). In this case, the equation of the tangent is
y=f′(x 0 )(xx 0 )+f(x 0 )
When a curve is given in the form x=f(t),y=g(t) (add z=h(t) for a space curve), for the parameter value t 0 corresponding to P 0 (x 0 ,y 0 ), the vector with components (dx/dt) t=t0 ,(dy/dt) t=t0 , that is, (f′(t 0 ),g′(t 0 )), is called the tangent vector at this point. In this case, the equation of the tangent line is x=x 0 +f′(t 0 )u, y=y 0 +g′(t 0 )u, with u as a parameter.
This is expressed as:

[Osamu Takenouchi]

Tangent line explanation diagram
©Shogakukan ">

Tangent line explanation diagram


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

曲線上の点P0と、その近くの点Pとを結んだ直線があり、PをP0に近づけた極限を考えるとき、この直線P0Pが、ある一定の直線lに近づくならば、この直線lを、この曲線上の点P0における接線という。接線は、切線と書いたこともあったが、いまはこの字は使わない。

 楕円(だえん)、双曲線、放物線などの二次曲線の曲線上の点P0(x0,y0)における接線の式を
  y=m(x-x0)+y0
とすれば、mは、この式を曲線の方程式に代入して得られる二次方程式が重根を有する条件から定められる。関数y=f(x)のグラフ上の点P0(x0,f(x0))における接線の傾きは、

である。したがってf(x)がx=x0で微分可能であることと、曲線y=f(x)が点P0(x0,f(x0))で接線を有することは同値であり、このとき接線の方程式は、
  y=f′(x0)(x-x0)+f(x0)
となる。曲線がx=f(t),y=g(t)の形で与えられているとき(空間曲線ならばこれにz=h(t)を加える)、P0(x0,y0)に対応するパラメータの値t0に対して、(dx/dt)t=t0,(dy/dt)t=t0を成分にもつベクトル、すなわち(f′(t0),g′(t0))をこの点における接ベクトルという。接線の方程式は、このとき、uをパラメータとして
  x=x0+f′(t0)u, y=y0+g′(t0)u
と表される。

[竹之内脩]

接線説明図
©Shogakukan">

接線説明図


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Snow line - Sessen (English spelling) snowline

>>:  Busy - Busy

Recommend

Kowakidani [Hot Springs] - Kowakidani

This hot spring is located at an altitude of 600m ...

Mururoa Atoll - Mururoa Atoll

Atoll with a population of 3,230 (1995) in the Tua...

Robert Grant Aitken

American astronomer. Born in California. After gr...

Tussaud, M.

...Founder of the London Wax Museum, known for it...

Ite missa est (English spelling)

Final recitation (shuusaisho). A liturgical text t...

Emotion - Jou

〘noun〙① The emotional response that arises from so...

Sogoro Kawai - Poor Goro

...His family name was Iwanami, his given name wa...

Ouyang Sotsuko - Ouyang Sotsuko

…He first served the Sui dynasty, then served Emp...

parent element

… T = log e 2/λ ≒ 0.693/λ is called the half-life...

Karl Marx University

→ University of Leipzig Source: Shogakukan Encycl...

Fountain pen

…Pen tips with ink-holding parts and ink-holding ...

Hokkaido University - Hokkaido University

It is a national university corporation. Its orig...

Kimonology - Kimonology

…In 1778 (An'ei 7), he was appointed as a Con...

Kaku Shukei

An astronomer, ritual implement maker, and hydrau...

Potassium sulfate

Potassium sulfate. Also called potassium sulfate....