A plane defined by the tangent and principal normal at a point P on a space curve C. Let us express the space curve using the vector equation x = x ( t ) ( a ≦ t ≦ q ), and let the points corresponding to t0 , t0 + h , and t0 + k be P( t0 ), Q( t0 + h ), and R( t0 + k ), respectively . If we define a plane passing through these three points , fix P, and allow Q and R to approach P ( h and k to 0), and if the plane defined by P, Q, and R approaches a certain plane, then the plane defined as the limit plane is called the tangent plane of the curve C at P( t0 ) . Now, if x , x ( t0 ), x ′( t0 ), and x ″ ( t0 ) are vectors, the equation of the contact plane can be expressed as follows in vector form : | x − x ( t 0 ) x ′( t 0 ) x '' ( t 0 ) | = 0 is given by: Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
空間曲線 C 上の1点Pにおける接線と主法線とによって定まる平面をいう。空間曲線をベクトル方程式を用いて x=x(t) (a≦t≦q) で表わし,t0 ,t0+h ,t0+k に対応する点をそれぞれ P(t0) ,Q(t0+h) ,R(t0+k) とする。ここでこれらの3点を通る平面を定め,Pを固定して,QおよびRをPに ( h と k を0に) 限りなく近づけるとき,P,Q,Rによって定められた平面が,ある一定の平面に近づくならば,その極限の平面として定まる平面を,P(t0) における曲線 C の接触平面という。いま,x ,x(t0) ,x′(t0) ,x''(t0) をベクトルとすれば,接触平面の方程式はベクトル表示により |x-x(t0) x′(t0) x''(t0)|=0 で与えられる。 出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
>>: Catalytic cracking - Session
This instruction was issued with the aim of estab...
A samurai who was active from the late Heian perio...
…General term for mammals of the carnivora order,...
...The Supreme Command of the Ground Forces, whic...
…After Poland gained independence in 1918, musica...
A Chinese government official in the middle Tang ...
At the time of his accession, most of the eastern...
Music critic and stage director. Born in Tokyo. D...
A port city in southern Italy facing the Strait of...
Located in Fushimi Ward, Kyoto City, this is the h...
...where c K is a proportionality constant. (3) B...
...In addition, pieces of music that imitate the ...
… Adrenaline does not pass through the blood-brai...
...the language of the Tibetan people living in t...
Born: July 1, 1872 in Cambrai [Died] August 2, 193...