The intrinsic angular momentum of an elementary particle or a composite particle is a quantum degree of freedom. In a classical physics picture, it can be thought of as the angular momentum due to the particle's rotation. The total angular momentum of a moving particle is expressed as the vector sum of its orbital angular momentum and its spin angular momentum. To understand the multiplet structure of atomic spectra, i.e., the fine structure of atomic energy levels, Pauli added a new degree of freedom with two values to the electrons moving in atomic orbits. Ralph Kronig (1904-1995), Houtsmit, and Uhlenbeck interpreted Pauli's idea as the rotation of a particle, and considered that the magnitude of the angular momentum due to the rotation takes a value of 1/2 in units of ħ (Dirac constant, which is the Planck constant h divided by 2π and pronounced H-bar) (the third axis component takes a value of ±1/2). Also, if an object with a charge rotates, a circular current is generated, and a magnetic moment proportional to it can be predicted. The value of this magnetic moment measured in units of Bohr magneton e ħ/2 mc ( e is the charge of the electron, m is the mass, and c is the speed of light) is called μ, and the ratio of μ to the angular momentum measured in units of ħ is called the g -factor. If this g- factor is set to 2, taking into account the Thomas effect, it has been found that the fine structure of the atomic energy levels and, by adding Pauli's principle, the various characteristics of atoms, including the periodic law, can be beautifully explained. [Shuzo Ogawa and Tsuneo Uematsu] Spin Operator In quantum mechanics, physical quantities are expressed as operators on state functions. The problem of how to represent the spin of an electron was also solved by Pauli. First, the Schrödinger wave function ψ( x ), which describes the state of an electron, is expressed as a two-component (two-row, one-column matrix) Generally, particles whose spin value is an integer in units of ħ are called bosons, and particles whose spin value is a half-integer value are called fermions. The former follow Bose-Einstein statistics, while the latter follow Fermi-Dirac statistics. Gauge particles that mediate forces, such as photons, gluons, and weak bosons, have a spin of 1 and are bosons, while quarks and leptons that make up matter have a spin of 1/2 and are fermions. Fermions follow the Pauli principle, which states that only one particle can exist in the same state. It is believed that a symmetry called supersymmetry, which links fermions and bosons, plays an important role in unifying forces. [Shuzo Ogawa and Tsuneo Uematsu] Nuclear SpinProtons, one of the components of an atomic nucleus, are particles (Fermi-Dirac particles) that, like electrons, have a spin of 1/2 and satisfy the Pauli principle, as was revealed in the elucidation of the problem of the specific heat of hydrogen molecules. The other component, the neutron, has the same properties as a proton, except that its charge is zero. Atomic nuclei, which are made up of protons and neutrons, have an angular momentum for the entire nucleus, which is a combination of the spin and orbital motion of these particles. This is called nuclear spin, but at the same time, a nuclear magnetic moment is created that is the sum of the magnetic moments of the components. This nuclear magnetic moment, through its interaction with the magnetic moments of the orbital electrons, gives the atom a shift in the energy levels, i.e., a hyperfine structure of the levels. From this structure, the spin of the nucleus can be determined. On the other hand, nucleons are composed of three quarks, and how the spin of a nucleon is carried by its constituent quarks and gluons is being studied in deep inelastic scattering experiments of nucleons using polarized beams and polarized targets. So far, the results have been different from the predictions of the simple quark model, and the origin of nucleon spin is being pursued, including contributions from orbital angular momentum in addition to the intrinsic spin of quarks and gluons. [Shuzo Ogawa and Tsuneo Uematsu] "Spin Circulates," by Tomonaga Shinichiro (1982, Chuokoron-Shinsha)" ▽ "Angular Momentum and Spin," edited by Kamebuchi Susumu, Hara Yasuo, and Kodera Takeyasu, by Tomonaga Shinichiro (1989, Misuzu Shobo)" ▽ "Spin and Polarization," by Kubo Kenichi and Katori Kenji (1994, Baifukan)" ▽ "Iwanami Lectures on the World of Physics: Developments in Material Science 7, Quantum Spin Systems - Uncertainty Principle and Order," by Miyashita Seiji (2006, Iwanami Shoten)" [References] | | | | | |Elementary | | | | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
素粒子またはその複合粒子のもつ固有の角運動量で量子論的な自由度である。古典物理的な描像では粒子の自転による角運動量と考えられる。運動する粒子の全角運動量は、軌道角運動量とこのスピン角運動量のベクトル和で表される。 原子スペクトルの多重項構造、すなわち原子のエネルギー準位の微細構造の特徴を理解するために、パウリは、原子の軌道を運動する電子に新しく二価性をもつ自由度を付加した。クローニッヒRalph Kronig(1904―1995)、ハウトスミット、ウーレンベックは、パウリの前記の考えを粒子の自転と解釈し、自転に基づく角運動量の大きさが、ħ(ディラック定数。プランク定数hを2πで割ったもので、エイチ・バーと読む)を単位にして1/2の値をとると考えた(第3軸成分は±1/2の値をとる)。また電荷をもつものが回転していれば円電流が生じ、それに比例する磁気モーメントが予想できる。この磁気モーメントの、ボーア磁子eħ/2mc(eは電子の電荷、mは同じく質量、cは光速度)を単位にして測った値をμとして、このμとħを単位として測った角運動量との比をg因子とよぶ。このg因子を2とすると、トーマスの効果も考慮して、原子のエネルギー準位の微細構造、さらにまたパウリの原理を加えることによって周期律を含めて原子の諸特徴をみごとに説明できることがみいだされた。 [小川修三・植松恒夫] スピン演算子量子力学では、物理量は状態関数に対する演算子として表現される。電子のスピンをどのように表すかという問題もパウリによって解決された。まず電子の状態を記述するシュレーディンガーの波動関数ψ(x)を2成分(2行1列の行列) 一般にスピンの値がħを単位にして整数値をとる粒子をボソン、半整数値をとる粒子をフェルミオンという。前者はボース‐アインシュタイン統計、後者はフェルミ‐ディラック統計に従う。光子、グルーオン、ウィークボソンなどの力を媒介するゲージ粒子はスピンが1でボソン、物質を構成するクォークやレプトンはスピンが1/2でフェルミオンである。フェルミオンは同じ状態には1個の粒子しか存在できないというパウリの原理に従う。力の統一にはフェルミオンとボソンの間を関連づける超対称性とよばれる対称性が重要な働きをすると考えられている。 [小川修三・植松恒夫] 核スピン原子核の構成要素の一つである陽子は、電子と同じくスピン1/2をもちパウリの原理を満たす粒子(フェルミ‐ディラック粒子)であることが、水素分子の比熱の問題の解明のなかで明らかになった。もう一つの要素である中性子も、電荷が0という点を除いて陽子と同じ性質をもつ。陽子・中性子を構成要素とする原子核は、これら粒子のスピンや軌道運動の合成による核全体の角運動量をもつ。これを核スピンというが、同時に構成要素の磁気モーメントの和からなる核磁気モーメントができる。この核磁気モーメントは、それと軌道電子の磁気モーメントとの相互作用により、原子のエネルギー準位のずれ、すなわち準位の超微細構造を与える。この構造から核のスピンを決定できる。 一方、核子は三つのクォークからなるが、核子のスピンがその構成要素のクォークやグルーオンにいかに担われているかが、偏極ビームおよび偏極ターゲットを用いた核子の深非弾性散乱の実験で研究されている。これまでのところ、素朴なクォーク模型の予想とは異なっており、クォークやグルーオンの固有のスピン以外に軌道角運動量からの寄与も含めて、核子スピンの起源の問題として追究されている。 [小川修三・植松恒夫] 『朝永振一郎著『スピンはめぐる』(1982・中央公論社)』▽『亀淵迪・原康夫・小寺武康編、朝永振一郎著『角運動量とスピン』(1989・みすず書房)』▽『久保謙一・鹿取謙二著『スピンと偏極』(1994・培風館)』▽『宮下精二著『岩波講座 物理の世界 物質科学の展開7 量子スピン系――不確定性原理と秩序』(2006・岩波書店)』 [参照項目] | | | | | | | | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
An inlet on the Sanriku coast in the southeastern...
Year of death: 2 March 1579 (March 28, 1579) Year ...
A prison located in the City of London, England. E...
…There are various legends about their number, bu...
Born: November 30, 1642 in Trento Died: August 31,...
…any of the birds belonging to the family Aepyorn...
This Japanese folk tale is also known as "The...
A god in Norse mythology. He is well known along ...
A concept used to protect the right to live in a h...
…Until 1960, it was the capital of South Hamgyong...
...Also, as science became more specialized aroun...
Based on Article 21 of the Basic Agricultural Law...
...Hermes Trismegistus, known as the founder of a...
…(5) Fluid energy mill A device that blows high-p...
A structure that blocks rivers or valleys and stor...