Water mass - Suikai (English spelling)

Japanese: 水塊 - すいかい(英語表記)water mass
Water mass - Suikai (English spelling)

A large mass of seawater in the ocean that has similar physical and chemical properties. The properties include water temperature, salinity, dissolved oxygen, nutrients, etc., but can also include water color, transparency, plankton, etc. The boundaries between water masses are discontinuous zones where these properties change suddenly.

[Masao Hanzawa and Kenzo Takano]

Distinguishing water bodies

To distinguish water masses, a T-S diagram is usually used, which is obtained by plotting water temperature against salinity at each depth obtained from a single observation point on a diagram with water temperature (T) on the vertical axis and salinity (S) on the horizontal axis.

The T-S diagram was invented in 1916 by Norwegian oceanographer Bjørn Helland-Hansen (1877-1957), and is still widely used today for analyzing ocean conditions because it is simple and allows clear distinction between water masses. The T-S curves of the same water mass show almost the same shape, except for the surface layer, which has large seasonal changes. In addition, isopycnals (usually iso-sigma t lines) are also plotted on the T-S diagram, and the intersection angle between the isopycnals and the T-S curve can be used to examine the vertical stability of the water mass and to know the mixing state of two water masses on the isopycnals.

[Masao Hanzawa and Kenzo Takano]

Origin of water masses

Factors that cause the formation of water masses include heat entering and leaving the ocean surface, evaporation, precipitation, ocean currents, freezing and melting, and inland water inflow near land. For example, in subtropical oceans, active evaporation from the ocean surface increases the salinity of the seawater, forming high-salinity water masses. In high latitudes, water that cools on the surface in winter sinks and becomes heavier, becoming deep water and bottom water.

[Masao Hanzawa and Kenzo Takano]

Water masses of the world's oceans

The upper waters of the three major oceans are divided into three categories: (1) polar water, found south of 40 degrees south latitude and north of 40 degrees north in the Pacific Ocean, (2) central water, found in the mid-latitudes of almost all oceans, and (3) equatorial water, found in the equatorial regions of the Pacific Ocean and Indian Ocean. These can be identified using the T-S diagram mentioned above.

The Pacific Central Water exists in the North and South Pacific Oceans, which are further divided into East and West. Equatorial Water is clearly present in the Pacific and Indian Oceans, but is not clearly present in the Atlantic Ocean, where there is only a gradual change from North Central Water to South Central Water. To the poles of the Central Water are subarctic and subantarctic Water. Further south from the subarctic water, which is subantarctic water, there is the Antarctic Circumpolar Water.

Intermediate water (between upper water and deep water, at a depth of several hundred meters, generally a layer of minimal salinity) originates from subarctic water in the North Pacific and is called subarctic intermediate water. Subarctic water dives beneath the central water at the Subarctic Convergence. In the Southern Hemisphere, Antarctic surface water dives beneath the Antarctic Convergence to become intermediate water.

Deep water is a huge mass of water that occupies most of the deep ocean, excluding upper, middle and bottom water. It is characterized by low temperature and high density. Bottom water refers to the water at the bottom of the ocean, which is deeper than about 4,000 meters. The distinction between bottom water and deep water is not very clear, except in the Antarctic Ocean. Deep water and bottom water are formed when cold, highly saline surface water sinks in the northwestern North Atlantic and the waters around Antarctica, and then spreads throughout the entire ocean.

Evaporation from the sea surface is high in the Mediterranean and Red Seas, for example 210 cm per year in the northern Red Sea. Low precipitation results in the formation of highly saline water. This highly saline water flows from the Mediterranean Sea through the Strait of Gibraltar into the North Atlantic Ocean, and from the Red Sea through the Bab el-Mandeb Strait and the Gulf of Aden into the Indian Ocean. It has a large impact on the formation of intermediate and deep waters in the North Atlantic and Indian Oceans.

[Masao Hanzawa and Kenzo Takano]

[Reference] | Seawater

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

海洋で物理的、化学的性質が似かよった海水の大きな塊(かたまり)をいう。性質とは、水温、塩分、溶存酸素、栄養塩類などをいうが、水色、透明度、プランクトンなどを含むこともある。水塊と水塊との境界はこれらの諸性質が急変する不連続帯となっている。

[半澤正男・高野健三]

水塊の判別

水塊を判別するには普通T‐SダイヤグラムT‐S diagramが用いられる。これは縦軸に水温T、横軸に塩分Sをとり、このダイヤグラム上に、一つの観測点で得られた各深度の塩分に対する水温をプロット(記入)して得られる。

 T‐Sダイヤグラムはノルウェーの海洋学者ヘラン・ハンセンBjørn Helland-Hansen(1877―1957)が1916年に案出したもので、簡便で水塊の判別を明確に行うことができるため今日でも海況の解析によく使用されている。同じ水塊のT‐S曲線は季節変化の激しい表層部を除けば、ほぼ同じ形を示す。なお、T‐Sダイヤグラムには等密度線(通常、等シグマ・ティーσt線)も記入し、これとT‐S曲線との交角から水塊の鉛直安定度を調べたり、等密度線上で二つの水塊の混合の状況を知ることができる。

[半澤正男・高野健三]

水塊の成因

水塊が形成される要因としては、海面を出入する熱量、蒸発、降水、海水の流れ、結氷、融氷などのほか、陸地の近くでは陸水の流入がある。たとえば亜熱帯海域では海面からの蒸発が盛んなため海水の塩分が高くなり、高塩分の水塊ができる。また高緯度地方では冬季、表面で冷却されて、重くなった水は沈降して深層水、底層水になる。

[半澤正男・高野健三]

世界の海の水塊

三大洋の上層水は、(1)寒帯水polar water 南緯40度以南と太平洋の北緯40度以北にみられるもの、(2)中央水central water ほとんどすべての海の中緯度帯にみられるもの、(3)赤道水equatorial water 太平洋とインド洋の赤道地帯にみられるもの、の三つに分類される。これらは前述のT‐Sダイヤグラムで識別できる。

 太平洋の中央水は、南北太平洋にそれぞれ存在し、さらに東西に二分されている。赤道水は太平洋、インド洋では明瞭(めいりょう)に存在するが、大西洋でははっきりせず、北中央水から南中央水へのゆっくりした変化がみられるのみである。中央水の極側には亜寒帯水subarctic, subantarctic waterがある。亜寒帯水である亜南極水のさらに南極側には南極周極水antarctic circumpolar waterがある。

 中層水(上層水と深層水の中間、数百メートルの深さにあるもの、一般に塩分の極小層となっている)は、北太平洋では亜寒帯水が起源で亜寒帯中層水subarctic intermediate waterとよばれる。亜寒帯水が亜寒帯収束線から中央水の下層に潜ったものである。南半球では南極表層水が南極収束線で下層に潜って中層水となる。

 深層水deep waterは上・中層水と底層水bottom waterを除いた深海の大部分を占める巨大な水塊である。低温、高密度が特徴。底層水は約4000メートル以深の深海の底層海水をいう。南極海を除くと底層水と深層水の区別はあまりはっきりしない。深層水、底層水は北大西洋北西部と南極周辺海域で冷たい、高塩分の表層水が沈降したのち、全大洋に広がったものである。

 地中海と紅海では海面からの蒸発が盛んで、たとえば紅海北部では年間210センチメートルである。降水量が少ないため高塩分水が形成される。この高塩分水は地中海からはジブラルタル海峡を通って北大西洋に、紅海からはバブ・エル・マンデブ海峡を通り、アデン湾を経てインド洋に流出する。北大西洋とインド洋の中層水や深層水の形成に及ぼす影響は大きい。

[半澤正男・高野健三]

[参照項目] | 海水

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Flood damage - Suigai

>>:  Watermelon - Watermelon

Recommend

Abekobegaeru (paradoxical frog)

A frog of the family Upside-Down Frogs in the ord...

Braised pork - Kakuni

〘 noun 〙① A type of dish. Pork is cut into squares...

Schelch

…In Japan, it is said to have survived until the ...

Shell stand - Kaiketa

…All of these are small-scale fisheries, and most...

Kanobata

… [Hideo Kuroda] [Early Modern Period] In the Edo...

Lindane

…Of these, the gamma isomer was found to have the...

Matsuno [town] - Matsuno

A town in Kitauwa District, southern Ehime Prefect...

Llanos, F.de (English spelling) LlanosFde

... The Middle Ages in Spain continued until the ...

Omiya Kisuke - Omiya Kisuke

...When we look at the management of wealthy merc...

Kawachi (Vietnam) - Not good

…It is located in the north of the center of the ...

Salmonellosis - Salmonella

One of the three major bacterial food poisonings. ...

Stanley, ES (English spelling)

…British politician. After graduating from Oxford...

Bank of France - French (English) Banque de France

The central bank of France. It was founded in Par...

Oita [city] - Oita

A city in central Oita Prefecture. Established as ...

Kaibutsu Seimu - Kaibutsu Seimu

Developing human knowledge and completing the unde...